Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brad Matushewski is active.

Publication


Featured researches published by Brad Matushewski.


American Journal of Obstetrics and Gynecology | 2013

Correlation of arterial fetal base deficit and lactate changes with severity of variable heart rate decelerations in the near-term ovine fetus

Michael G. Ross; Marquis Jessie; Kevin Amaya; Brad Matushewski; L. Daniel Durosier; Martin G. Frasch; Bryan S. Richardson

OBJECTIVE Recent guidelines classify variable decelerations without detail as to degree of depth. We hypothesized that variable deceleration severity is highly correlated with fetal base deficit accumulation. STUDY DESIGN Seven near-term fetal sheep underwent a series of graded umbilical cord occlusions resulting in mild (30 bpm decrease), moderate (60 bpm decrease), or severe (decrease of 90 bpm to baseline <70 bpm) variable decelerations at 2.5 minute intervals. RESULTS Mild, moderate, and severe variable decelerations increased fetal base deficit (0.21 ± 0.03, 0.27 ± 0.03, and 0.54 ± 0.09 mEq/L per minute) in direct proportion to severity. During recovery, fetal base deficit cleared at 0.12 mEq/L per minute. CONCLUSION In this model, ovine fetuses can tolerate repetitive mild and moderate variable decelerations with minimal change in base deficit and lactate. In contrast, repetitive severe variable decelerations may result in significant base deficit increases, dependent on frequency. Modified guideline differentiation of mild/moderate vs severe variable decelerations may aid in the interpretation of fetal heart rate tracings and optimization of clinical management paradigms.


Reproductive Sciences | 2016

Maternal Nutrient Restriction in Guinea Pigs as an Animal Model for Inducing Fetal Growth Restriction

Alexander A. Elias; Andrew Ghaly; Brad Matushewski; Timothy R. H. Regnault; Bryan S. Richardson

We determined the impact of moderate maternal nutrient restriction (MNR) in guinea pigs on pregnancy outcomes, maternal/fetal growth parameters, and blood analytes to further characterize the utility of this model for inducing fetal growth restriction (FGR). Thirty guinea pig sows were fed ad libitum (Control) or 70% of the control diet prepregnant switching to 90% at midpregnancy (MNR). Animals were necropsied near term with weights obtained on all sows, fetuses, and placenta. Fetal blood sampling and organ dissection were undertaken in appropriate for gestational age (AGA) fetuses from Control litters and FGR fetuses from MNR litters using > or < 80 g which approximated the 10th percentile for the population weight distribution of the Control fetuses. MNR fetal demise rates (1/43) were extremely low in contrast to that seen with uterine artery ligation/ablation models, albeit with increased preterm delivery in MNR sows (3 of 15). We confirm that MNR fetuses are smaller and have increased placental/fetal weight ratios as often seen in human FGR infants. We provide justification for using a fetal weight threshold for categorizing AGA Control and FGR-MNR cohorts reducing population variance, and show that FGR-MNR fetuses have asymmetrical organ growth, and are polycythemic and hypoglycemic which are also well associated with moderate FGR in humans. These findings further support the utility of moderate MNR in guinea pigs for inducing FGR with many similarities to that in humans with moderate growth restriction whether resulting from maternal undernourishment or placental insufficiency.


Brain Research | 2011

Maturational changes and effects of chronic hypoxemia on electrocortical activity in the ovine fetus

Ashley E. Keen; Martin G. Frasch; Melissa A. Sheehan; Brad Matushewski; Bryan S. Richardson

We have studied the maturation of electrocortical (ECoG) activity in fetal sheep and the impact of chronic hypoxemia using a growth restriction model with placental embolizations. Twenty chronically catheterized fetal sheep (control, n=9; hypoxemic, n=11) were monitored at 116-119, 121-126 and 128-134 days gestational age (term=145 days), with ECoG activity scored using automated analysis of amplitude and frequency components to distinguish low-voltage/high frequency (LV/HF) and high-voltage/low frequency (HV/LF) state epochs, along with indeterminate voltage/frequency (IV/F) and transition period activities. We have shown that multiple aspects of ECoG state activity in the ovine fetus undergo maturational change as electrophysiologic measures of brain development. With chronic fetal hypoxemia, some maturational changes continue to occur, i.e. ECoG activity amplitude and 95% SEF, indicating the resiliency of these parameters to adverse conditioning. However, some maturational changes were altered, i.e. LV/HF and HV/LF incidence and duration, and likely regulated and adaptive with a decrease in the brains nonessential energy needs, while some were altered, i.e. IV/F incidence and duration, and state transition times, and likely indicating a degree of aberrant development in associated control circuitries. This may then have consequences for disturbed sleep-wake patterns during later life and for adverse neurologic sequelae known to be increased in humans born with growth restriction.


PLOS ONE | 2012

The Impact of Intermittent Umbilical Cord Occlusions on the Inflammatory Response in Pre-Term Fetal Sheep

Andrew P. Prout; Martin G. Frasch; Ruud A. W. Veldhuizen; Rob Hammond; Brad Matushewski; Bryan S. Richardson

Fetal hypoxic episodes may occur antepartum with the potential to induce systemic and cerebral inflammatory responses thereby contributing to brain injury. We hypothesized that intermittent umbilical cord occlusions (UCOs) of sufficient severity but without cumulative acidosis will lead to a fetal inflammatory response. Thirty-one chronically instrumented fetal sheep at ∼0.85 of gestation underwent four consecutive days of hourly UCOs from one to three minutes duration for six hours each day. Maternal and fetal blood samples were taken for blood gases/pH and plasma interleukin (IL)-1β and IL-6 levels. Animals were euthanized at the end of experimental study with brain tissue processed for subsequent counting of microglia and mast cells. Intermittent UCOs resulted in transitory fetal hypoxemia with associated acidemia which progressively worsened the longer umbilical blood flow was occluded, but with no cumulative blood gas or pH changes over the four days of study. Fetal arterial IL-1β and IL-6 values showed no significant change regardless of the severity of the UCOs, nor was there any evident impact on the microglia and mast cell counts for any of the brain regions studied. Accordingly, intermittent UCOs of up to three minutes duration with severe, but limited fetal hypoxemia and no cumulative acidemia, do not result in either a systemic or brain inflammatory response in the pre-term ovine fetus. However, fetal IL-1B and IL-6 values were found to be well correlated with corresponding maternal values supporting the placenta as a primary source for these cytokines with related secretion into both circulations. Female fetuses were also found to have higher IL-1β levels than males, indicating that gender may impact on the fetal inflammatory response to various stimuli.


Developmental Neuroscience | 2014

Synaptic development and neuronal myelination are altered with growth restriction in fetal guinea pigs.

Karolina Piorkowska; Jennifer A. Thompson; Karen Nygard; Brad Matushewski; Robert Hammond; Bryan S. Richardson

This study examines aberrant synaptogenesis and myelination of neuronal connections as possible links to neurological sequelae in growth-restricted fetuses. Pregnant guinea pig sows were subjected to uterine blood flow restriction or sham surgeries at midgestation. The animals underwent necropsy at term with fetuses grouped according to body weight and brain-to-liver weight ratios as follows: appropriate for gestational age (n = 12); asymmetrically fetal growth restricted (aFGR; n = 8); symmetrically fetal growth restricted (sFGR; n = 8), and large for gestational age (n = 8). Fetal brains were perfusion fixed and paraffin embedded to determine immunoreactivity for synaptophysin and synaptopodin as markers of synaptic development and maturation, respectively, and for myelin basic protein as a marker for myelination, which was further assessed using Luxol fast blue staining. The most pertinent findings were that growth-restricted guinea pig fetuses exhibited reduced synaptogenesis and synaptic maturation as well as reduced myelination, which were primarily seen in subareas of the hippocampus and associated efferent tracts. These neurodevelopmental changes were more pronounced in the sFGR compared to the aFGR animals. Accordingly, altered hippocampal development involving synaptogenesis and myelination may represent a mechanism by which cognitive deficits manifest in human growth-restricted offspring in later life.


Pediatric Research | 2017

Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with evidence for chronic hypoxia

Alexander A. Elias; Yohei Maki; Brad Matushewski; Karen Nygard; Timothy R. H. Regnault; Bryan S. Richardson

BackgroundWe determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts markers for tissue hypoxia, implicating a mechanistic role for chronic hypoxia.MethodsGuinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Near term, hypoxyprobe-1 (HP-1), a marker of tissue hypoxia, was injected into pregnant sows. Fetuses were then necropsied and liver, kidney, and placental tissues were processed for erythropoietin (EPO), EPO-receptor (EPOR), and vascular endothelial growth factor (VEGF) protein levels, and for HP-1 immunoreactivity (IR).ResultsFGR–MNR fetuses were 36% smaller with asymmetrical growth restriction compared to controls. EPO and VEGF protein levels were increased in the female FGR–MNR fetuses, providing support for hypoxic stimulus and linkage to increased erythropoiesis, but not in the male FGR–MNR fetuses, possibly reflecting a weaker link between oxygenation and erythropoiesis. HP-1 IR was increased in the liver and kidneys of both male and female FGR–MNR fetuses as an index of local tissue hypoxia, but with no changes in the placenta.ConclusionChronic hypoxia is likely to be an important signaling mechanism for the decreased fetal growth seen with maternal undernutrition and appears to be post-placental in nature.


Physiological Reports | 2015

Adaptive shut‐down of EEG activity predicts critical acidemia in the near‐term ovine fetus

Martin G. Frasch; Lucien Daniel Durosier; Nathan Gold; Mingju Cao; Brad Matushewski; Lynn Keenliside; Yoram Louzoun; Michael G. Ross; Bryan S. Richardson

In fetal sheep, the electrocorticogram (ECOG) recorded directly from the cortex during repetitive heart rate (FHR) decelerations induced by umbilical cord occlusions (UCO) predictably correlates with worsening hypoxic‐acidemia. In human fetal monitoring during labor, the equivalent electroencephalogram (EEG) can be recorded noninvasively from the scalp. We tested the hypothesis that combined fetal EEG – FHR monitoring allows for early detection of worsening hypoxic‐acidemia similar to that shown for ECOG‐FHR monitoring. Near‐term fetal sheep (n = 9) were chronically instrumented with arterial and venous catheters, ECG, ECOG, and EEG electrodes and umbilical cord occluder, followed by 4 days of recovery. Repetitive UCOs of 1 min duration and increasing strength (with regard to the degree of reduction in umbilical blood flow) were induced each 2.5 min until pH dropped to <7.00. Repetitive UCOs led to marked acidosis (arterial pH 7.35 ± 0.01 to 7.00 ± 0.03). At pH of 7.22 ± 0.03 (range 7.32–7.07), and 45 ± 9 min (range 1 h 33 min–20 min) prior to attaining pH < 7.00, both ECOG and EEG amplitudes began to decrease ~fourfold during each FHR deceleration in a synchronized manner. Confirming our hypothesis, these findings support fetal EEG as a useful adjunct to FHR monitoring during human labor for early detection of incipient fetal acidemia.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018

Maternal nutrient restriction in guinea pigs as an animal model for studying growth-restricted offspring with postnatal catch-up growth

Catherine L. Nevin; Evan Formosa; Yohei Maki; Brad Matushewski; Timothy R. H. Regnault; Bryan S. Richardson

We determined the impact of moderate maternal nutrient restriction (MNR) in guinea pigs with fetal growth restriction (FGR) on offspring body and organ weights, hypothesizing that FGR-MNR animals will show catch-up growth but with organ-specific differences. Guinea pig sows were fed ad libitum (Control) or 70% of the control diet from 4 weeks preconception, switching to 90% at midpregnancy (MNR). Control newborns >95 g [appropriate for gestational age (AGA); n = 37] and MNR newborns <85 g (FGR; n = 37) were monitored until neonatal (~25 days) or adult (~110 days) necropsy. Birth weights and body/organ weights at necropsy were used to calculate absolute and fractional growth rates (FRs). FGR-MNR birth weights were decreased ~32% compared with the AGA-Controls. FGR-MNR neonatal whole body FRs were increased ~36% compared with Controls indicating catch-up growth, with values negatively correlated to birth weights indicating the degree of FGR leads to greater catch-up growth. However, the increase in organ FRs in the FGR-MNR neonates compared with Controls was variable, being similar for the brain and kidneys indicating comparable catch-up growth to that of the whole body and twofold increased for the liver but negligible for the heart indicating markedly increased and absent catch-up growth, respectively. While FGR-MNR body and organ weights were unchanged from the AGA-Controls by adulthood, whole body growth rates were increased. These findings confirm early catch-up growth in FGR-MNR guinea pigs but with organ-specific differences and enhanced growth rates by adulthood, which are likely to have implications for structural alterations and disease risk in later life.


American Journal of Obstetrics and Gynecology | 2016

Accelerated acidosis in response to variable fetal heart rate decelerations in chronically hypoxic ovine fetuses.

Kevin Amaya; Brad Matushewski; L. Daniel Durosier; Martin G. Frasch; Bryan S. Richardson; Michael G. Ross

BACKGROUND Due to limitations of technology, clinicians are typically unable to determine if human fetuses are normoxic or moderately, chronically hypoxic. Risk factors for chronic hypoxia include fetal growth restriction, which is associated with an increased incidence of oligohydramnios and thus a risk for umbilical cord occlusion (UCO) and variable fetal heart rate (FHR) decelerations. At delivery, fetal growth restriction infants (<3rd percentile) have nearly twice the incidence of low Apgar scores and umbilical pH <7.0. Despite the risks of oligohydramnios and intermittent UCO, there is little understanding of the acid/base responses rates of chronically hypoxic fetuses to variable FHR decelerations as might occur during human labor. OBJECTIVE We sought to compare the increase in base deficit (BD) among chronically hypoxic as compared to normoxic ovine fetuses in response to simulated mild, moderate, and severe variable FHR decelerations. STUDY DESIGN Near-term ovine fetuses were chronically prepared with brachial artery catheters and an inflatable umbilical cuff occluder. Following a recovery period, normoxic (n = 9) and spontaneously hypoxic (n = 5) fetuses were identified (arterial O2 saturation ≤55%). Both animal groups underwent graded, 1-minute occlusions every 2.5 minutes with 1 hour of mild (∼30 beats/min [bpm] decrease from baseline), 1 hour of moderate (∼60 bpm decrease from baseline), and up to 2 hours of severe (∼90 bpm decrease from baseline) variable FHR decelerations until fetal arterial pH reached 7.00, when occlusions were stopped. RESULTS Repetitive UCO resulted in development of acidosis (pH <7.0) in both groups. Hypoxic and normoxic fetuses demonstrated similar BD increases in response to both mild (0.39, interquartile range [IQR] 0.28-0.45 vs 0.26, IQR 0.01-0.30 mEq/L/10 min, P = .25) and severe (1.97, IQR 1.50-2.43 vs 1.51, IQR 0.97-2.45 mEq/L/10 min, P = .63) variable decelerations. However, moderate variable decelerations increased BD in hypoxic fetuses at 2.5 times the rate of normoxic fetuses (0.97, IQR 0.52-1.72 vs 0.39, IQR 0.23-0.47 mEq/L/10 min, P = .03). During the recovery period, hypoxic fetuses cleared BD slower than normoxic fetuses (0.08 ± 0.02 vs 0.12 ± 0.03 mEq/L/min, P = .02). CONCLUSION In comparison to normoxic fetuses, hypoxic fetuses can more rapidly progress to significant metabolic acidosis in response to moderate FHR variable decelerations, and more slowly recover with in utero resuscitation, likely a consequence of impaired placental function and fetal physiologic responses.


Reproductive Sciences | 2015

The Ovine Fetal and Placental Inflammatory Response to Umbilical Cord Occlusions With Worsening Acidosis

Alex Xu; Brad Matushewski; Mingju Cao; Robert Hammond; Martin G. Frasch; Bryan S. Richardson

We hypothesized that repetitive umbilical cord occlusions (UCOs) leading to severe acidemia will stimulate a placental and thereby fetal inflammatory response which will be exacerbated by chronic hypoxemia and low-grade bacterial infection. Chronically instrumented fetal sheep served as controls or underwent repetitive UCOs for up to 4 hours or until fetal arterial pH was <7.00. Normoxic-UCO and hypoxic-UCO fetuses had arterial O2 saturation pre-UCOs of >55% and <55%, respectively, while lipopolysaccharide (LPS)-UCO fetuses received LPS intra-amniotic (2 mg/h) starting 1 hour pre-UCOs. Fetal plasma and amniotic fluid were sampled for interleukin (IL) 6 and IL-1β. Animals were euthanized at 48 hours of recovery with placental cotyledons processed for measurement of macrophage, neutrophil, and mast cell counts. Repetitive UCOs resulted in severe fetal acidemia with pH approaching 7.00 for all 3 UCO groups. Neutrophils, while unchanged within the cotyledon fetal and intermediate zones, were ∼2-fold higher within the zona intima for all 3 UCO groups. However, no differences were observed in macrophage counts among the treatment groups and no cotyledon mast cells were seen. Fetal plasma and amniotic fluid cytokines remained little changed post-UCOs and/or at 1 and 48 hours of recovery in the normoxic-UCO and hypoxic-UCO groups but increased several fold in the LPS-UCO group with IL-6 plasma values at 1 hour recovery highly correlated with the nadir pH attained (r = −.97). As such, repetitive UCOs with severe acidemia can induce a placental inflammatory response and more so with simulated low-grade infection and likely contributing to cytokine release in the umbilical circulation.

Collaboration


Dive into the Brad Matushewski's collaboration.

Top Co-Authors

Avatar

Bryan S. Richardson

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Nygard

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Robert Hammond

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Xu

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Alexander A. Elias

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mingju Cao

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge