Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brad Sutter is active.

Publication


Featured researches published by Brad Sutter.


Science | 2013

Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover

L. A. Leshin; Paul R. Mahaffy; C. R. Webster; Michel Cabane; Patrice Coll; P. G. Conrad; P. D. Archer; Sushil K. Atreya; A. E. Brunner; Arnaud Buch; Jennifer L. Eigenbrode; G. J. Flesch; Heather B. Franz; Caroline Freissinet; D. P. Glavin; A. C. McAdam; Kristen E. Miller; D. W. Ming; Richard V. Morris; Rafael Navarro-González; Paul B. Niles; Tobias Owen; S. W. Squyres; Andrew Steele; Jennifer C. Stern; Roger E. Summons; Dawn Y. Sumner; Brad Sutter; Cyril Szopa; Samuel Teinturier

Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity’s Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.


Science | 2015

Mars methane detection and variability at Gale crater

C. R. Webster; Paul R. Mahaffy; Sushil K. Atreya; G. J. Flesch; Michael A. Mischna; P.-Y. Meslin; Kenneth A. Farley; P. G. Conrad; Lance E. Christensen; A. A. Pavlov; Javier Martin-Torres; María-Paz Zorzano; Timothy H. McConnochie; Tobias Owen; Jennifer L. Eigenbrode; Daniel P. Glavin; Andrew Steele; C. A. Malespin; P. Douglas Archer; Brad Sutter; Patrice Coll; Caroline Freissinet; Christopher P. McKay; John E. Moores; S. P. Schwenzer; John C. Bridges; Rafael Navarro-González; Ralf Gellert; Mark T. Lemmon

Of water and methane on Mars The Curiosity rover has been collecting data for the past 2 years, since its delivery to Mars (see the Perspective by Zahnle). Many studies now suggest that many millions of years ago, Mars was warmer and wetter than it is today. But those conditions required an atmosphere that seems to have vanished. Using the Curiosity rover, Mahaffy et al. measured the ratio of deuterium to hydrogen in clays that were formed 3.0 to 3.7 billion years ago. Hydrogen escapes more readily than deuterium, so this ratio offers a snapshot measure of the ancient atmosphere that can help constrain when and how it disappeared. Most methane on Earth has a biological origin, so planetary scientists have keenly pursued its detection in the martian atmosphere as well. Now, Webster et al. have precisely confirmed the presence of methane in the martian atmosphere with the instruments aboard the Curiosity rover at Gale crater. Science, this issue p. 412, p. 415; see also p. 370 Curiosity confirms the presence and variability of atmospheric methane, implying episodic production from an unknown source. [Also see Perspective by Zahnle] Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source.


Journal of Geophysical Research | 2014

Abundances and implications of volatile‐bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

P. D. Archer; Heather B. Franz; Brad Sutter; Ricardo Arevalo; Patrice Coll; Jennifer L. Eigenbrode; Daniel P. Glavin; John Jones; Laurie A. Leshin; Paul R. Mahaffy; A. C. McAdam; Christopher P. McKay; Douglas W. Ming; Richard V. Morris; Rafael Navarro-González; Paul B. Niles; Alex Pavlov; Steven W. Squyres; Jennifer C. Stern; Andrew Steele; James J. Wray

The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

Jennifer C. Stern; Brad Sutter; Caroline Freissinet; Rafael Navarro-González; Christopher P. McKay; P. Douglas Archer; Arnaud Buch; A. E. Brunner; Patrice Coll; Jennifer L. Eigenbrode; Alberto G. Fairén; Heather B. Franz; Daniel P. Glavin; S. Kashyap; A. C. McAdam; Douglas W. Ming; Andrew Steele; Cyril Szopa; James J. Wray; F. Javier Martin-Torres; María-Paz Zorzano; P. G. Conrad; Paul R. Mahaffy

Significance We present data supporting the presence of an indigenous source of fixed nitrogen on the surface of Mars in the form of nitrate. This fixed nitrogen may indicate the first stage in development of a primitive nitrogen cycle on the surface of ancient Mars and would have provided a biochemically accessible source of nitrogen. The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.


Astrobiology | 2008

The MARTE VNIR Imaging Spectrometer Experiment: Design and Analysis

Adrian J. Brown; Brad Sutter; Stephen E. Dunagan

We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain. We analyzed subsets of three cores from Río Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.


Journal of Geophysical Research | 2017

Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations

Bethany L. Ehlmann; Kenneth S. Edgett; Brad Sutter; C. N. Achilles; M. L. Litvak; Mathieu G.A. Lapotre; R. Sullivan; A. A. Fraeman; Raymond E. Arvidson; David F. Blake; Nathan T. Bridges; P. G. Conrad; A. Cousin; Robert T. Downs; T. S. J. Gabriel; R. Gellert; Victoria E. Hamilton; Craig Hardgrove; Jeffrey R. Johnson; S. R. Kuhn; Paul R. Mahaffy; Sylvestre Maurice; M. McHenry; P.-Y. Meslin; D. W. Ming; M. E. Minitti; J. M. Morookian; Richard V. Morris; C. D. O'Connell‐Cooper; P. C. Pinet

Abstract The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45–500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust‐covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt‐sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse‐sieved fraction of Bagnold sands, corroborated by visible/near‐infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand‐sized fraction (represented by Bagnold) that are Si‐enriched, hydroxylated alteration products and/or H2O‐ or OH‐bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.


Journal of Geophysical Research | 2014

Sulfur‐bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

A. C. McAdam; Heather B. Franz; Brad Sutter; P. D. Archer; Caroline Freissinet; Jennifer L. Eigenbrode; Douglas W. Ming; Sushil K. Atreya; David L. Bish; David F. Blake; Hannah E. Bower; A. E. Brunner; Arnaud Buch; Daniel P. Glavin; John P. Grotzinger; Paul R. Mahaffy; Scott M. McLennan; Richard V. Morris; Richard Navarro-González; E. B. Rampe; Steven W. Squyres; Andrew Steele; Jennifer C. Stern; Dawn Y. Sumner; James J. Wray

The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from ~450 to 800°C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2 (~3–22 µmol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (~41–109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (~1–5 nmol) and CS2 (~0.2–1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.


Astrobiology | 2008

The 2005 MARTE Robotic Drilling Experiment in Río Tinto, Spain: Objectives, Approach, and Results of a Simulated Mission to Search for Life in the Martian Subsurface

Carol R. Stoker; Howard Cannon; Stephen E. Dunagan; Lawrence G. Lemke; Brian Glass; David P. Miller; Javier Gómez-Elvira; Kiel Davis; Jhony Zavaleta; Alois Winterholler; Matt Roman; J. A. Rodriguez-Manfredi; Rosalba Bonaccorsi; Mary Sue Bell; Adrian J. Brown; Melissa Battler; Bin Chen; George Cooper; Mark R. Davidson; David Carlos Fernandez-Remolar; Eduardo Gonzales-Pastor; Jennifer Lynne Heldmann; J. Martínez-Frías; Victor Parro; Olga Prieto-Ballesteros; Brad Sutter; Andrew C. Schuerger; J. W. Schutt; Fernando Rull

The Mars Astrobiology Research and Technology Experiment (MARTE) simulated a robotic drilling mission to search for subsurface life on Mars. The drill site was on Peña de Hierro near the headwaters of the Río Tinto river (southwest Spain), on a deposit that includes massive sulfides and their gossanized remains that resemble some iron and sulfur minerals found on Mars. The mission used a fluidless, 10-axis, autonomous coring drill mounted on a simulated lander. Cores were faced; then instruments collected color wide-angle context images, color microscopic images, visible-near infrared point spectra, and (lower resolution) visible-near infrared hyperspectral images. Cores were then stored for further processing or ejected. A borehole inspection system collected panoramic imaging and Raman spectra of borehole walls. Life detection was performed on full cores with an adenosine triphosphate luciferin-luciferase bioluminescence assay and on crushed core sections with SOLID2, an antibody array-based instrument. Two remotely located science teams analyzed the remote sensing data and chose subsample locations. In 30 days of operation, the drill penetrated to 6 m and collected 21 cores. Biosignatures were detected in 12 of 15 samples analyzed by SOLID2. Science teams correctly interpreted the nature of the deposits drilled as compared to the ground truth. This experiment shows that drilling to search for subsurface life on Mars is technically feasible and scientifically rewarding.


Journal of Geophysical Research | 2017

Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune

Brad Sutter; A. C. McAdam; Paul R. Mahaffy; D. W. Ming; Kenneth S. Edgett; E. B. Rampe; Jennifer L. Eigenbrode; Heather B. Franz; C. Freissinet; John P. Grotzinger; Andrew Steele; Christopher H. House; P. D. Archer; C. A. Malespin; Rafael Navarro-González; J. C. Stern; James F. Bell; F. Calef; R. Gellert; D. P. Glavin; Lucy M. Thompson; Albert S. Yen

The Sample Analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H2, SO2, H2S, NO, CO2, CO, O2 and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO2 (160 ± 248 - 2373 ± 820 μgC(CO2)/g), and CO (11 ± 3 - 320 ± 130 μgC(CO)/g) suggest organic-C is present in Gale Crater materials. Five samples evolved CO2 at temperatures consistent with carbonate (0.32± 0.05 - 0.70± 0.1 wt.% CO3). Evolved NO amounts to 0.002 ± 0.007 - 0.06 ± 0.03 wt.% NO3. Evolution of O2 suggests oxychlorine phases (chlorate/perchlorate) (0.05 ± 0.025 - 1.05 ± 0.44wt. % ClO4) are present while SO2 evolution indicates the presence of crystalline and/or poorly crystalline Fe- and Mg-sulfate and possibly sulfide. Evolved H2O (0.9 ± 0.3 - 2.5 ± 1.6 wt.% H2O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H2 and H2S suggest reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, carbonate). SAM results coupled with CheMin mineralogical and APXS elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic-C to support a small microbial population.


Planetary Science | 2013

The effects of instrument parameters and sample properties on thermal decomposition: interpreting thermal analysis data from Mars

P. D. Archer; Douglas W. Ming; Brad Sutter

Thermal analysis instruments have been used on Mars by the Viking, Phoenix, and MSL missions. These instruments can be very useful in identifying volatile-bearing minerals such as carbonates, sulfates, or phyllosilicates down to very low abundances. Mineral identification is done by comparing thermal decomposition behavior of samples with known mineralogy to samples with unknown mineralogy. However, thermal decomposition behavior can change with instrument conditions such as pressure and sample properties such as particle size. The Mars instruments flown to date have used much lower pressures and flow rates than traditional laboratory experiments. The objective of this work was to investigate whether an analytical model based on equilibrium thermodynamics can accurately predict changes in decomposition temperature in instruments operating under lower pressure/flow conditions. We find that while the model predicts the general trend that decomposition temperature drops with decreasing pressure, the difference between modeled and measured temperatures can be on the order of 100°C for carbonates and sulfates. These differences can be explained by factors such as sample particle size, carrier gas species, gas flow rate, and oven volume. A calcium carbonate sample shows how particle size can change decomposition temperature by almost 200°C (decomposition temperatures decrease with decreasing particle size) and that carrier gas species, flow rate, and instrument geometry can affect decomposition temperatures by 20-50°C. These results demonstrate that predicting changes in decomposition temperature based on a thermodynamic or empirical model is not sufficient and that samples must be run under instrument conditions relevant to the instrument that produced the data on Mars. Furthermore, the effects of particle size, carrier gas species and flow rate, as well as instrument geometry must be taken into account in order to compare Mars data to samples run in terrestrial labs. This work shows the magnitude of these factors, demonstrating why they must be taken into account, providing a framework for how to correctly interpret thermal analysis data from Mars.

Collaboration


Dive into the Brad Sutter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Mahaffy

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Heather B. Franz

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

A. C. McAdam

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Rafael Navarro-González

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas W. Ming

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel P. Glavin

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

P. G. Conrad

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge