Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradford A. Moffat is active.

Publication


Featured researches published by Bradford A. Moffat.


Clinical Cancer Research | 2006

Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors

G. Ramachandra Reddy; Mahaveer S. Bhojani; Patrick McConville; Jonathan B. Moody; Bradford A. Moffat; Daniel E. Hall; Gwangseong Kim; Yong Eun L. Koo; Michael J. Woolliscroft; James V. Sugai; Timothy D. Johnson; Martin A. Philbert; Raoul Kopelman; Alnawaz Rehemtulla; Brian D. Ross

Purpose: Development of new therapeutic drug delivery systems is an area of significant research interest. The ability to directly target a therapeutic agent to a tumor site would minimize systemic drug exposure, thus providing the potential for increasing the therapeutic index. Experimental Design: Photodynamic therapy (PDT) involves the uptake of a sensitizer by the cancer cells followed by photoirradiation to activate the sensitizer. PDT using Photofrin has certain disadvantages that include prolonged cutaneous photosensitization. Delivery of nanoparticles encapsulated with photodynamic agent specifically to a tumor site could potentially overcome the drawbacks of systemic therapy. In this study, we have developed a multifunctional polymeric nanoparticle consisting of a surface-localized tumor vasculature targeting F3 peptide and encapsulated PDT and imaging agents. Results: The nanoparticles specifically bound to the surface of MDA-435 cells in vitro and were internalized conferring photosensitivity to the cells. Significant magnetic resonance imaging contrast enhancement was achieved in i.c. rat 9L gliomas following i.v. nanoparticle administration. Serial magnetic resonance imaging was used for determination of pharmacokinetics and distribution of nanoparticles within the tumor. Treatment of glioma-bearing rats with targeted nanoparticles followed by PDT showed a significant improvement in survival rate when compared with animals who received PDT after administration of nontargeted nanoparticles or systemic Photofrin. Conclusions: This study reveals the versatility and efficacy of the multifunctional nanoparticle for the targeted detection and treatment of cancer.


Molecular Imaging | 2003

A Novel Polyacrylamide Magnetic Nanoparticle Contrast Agent for Molecular Imaging using MRI

Bradford A. Moffat; G. Ramachandra Reddy; Patrick McConville; Daniel E. Hall; Thomas L. Chenevert; Raoul Kopelman; Martin A. Philbert; Ralph Weissleder; Alnawaz Rehemtulla; Brian D. Ross

A novel polyacrylamide superparamagnetic iron oxide nanoparticle platform is described which has been synthetically prepared such that multiple crystals of iron oxide are encapsulated within a single polyacrylamide matrix (PolyAcrylamide Magnetic [PAM] nanoparticles). This formulation provides for an extremely large T2 and T2* relaxivity of between 620 and 1140 sec(-1) mM(-1). Administration of PAM nanoparticles into rats bearing orthotopic 9L gliomas allowed quantitative pharmacokinetic analysis of the uptake of nanoparticles in the vasculature, brain, and glioma. Addition of polyethylene glycol of varying sizes (0.6, 2, and 10 kDa) to the surface of the PAM nanoparticles resulted in an increase in plasma half-life and affected tumor uptake and retention of the nanoparticles as quantified by changes in tissue contrast using MRI. The flexible formulation of these nanoparticles suggests that future modifications could be accomplished allowing for their use as a targeted molecular imaging contrast agent and/or therapeutic platform for multiple indications.


Molecular Imaging | 2002

Diffusion MRI: A new strategy for assessment of cancer therapeutic efficacy

Thomas L. Chenevert; Charles R. Meyer; Bradford A. Moffat; Alnawaz Rehemtulla; Suresh K. Mukherji; Stephen S. Gebarski; Douglas J. Quint; Patricia L. Robertson; Theodore S. Lawrence; Larry Junck; Jeremy M. G. Taylor; Timothy D. Johnson; Qian Dong; Karin M. Muraszko; James A. Brunberg; Brian D. Ross

The use of anatomical imaging in clinical oncology practice traditionally relies on comparison of patient scans acquired before and following completion of therapeutic intervention. Therapeutic success is typically determined from inspection of gross anatomical images to assess changes in tumor size. Imaging could provide significant additional insight into therapeutic impact if a specific parameter or combination of parameters could be identified which reflect tissue changes at the cellular or physiologic level. This would provide an early indicator or treatment response/outcome in an individual patient before completion of therapy. Moreover, response of a tumor to therapeutic intervention may be heterogeneous. The use of imaging could assist in delineating therapeutic-induced spatial heterogeneity within a tumor mass by providing information related to specific regions that are resistant or responsive to treatment. Largely untapped potential resides in exploratory methods such as diffusion MRI, which is a nonvolumetric intravoxel measure of tumor response based upon water molecular mobility. Alterations in water mobility reflect changes in tissue structure at the cellular level. While the clinical utility of diffusion MRI for oncologic practice is still under active investigation, this overview on the use of diffusion MRI for the evaluation of brain tumors will serve to introduce how this approach may be applied in the future for the management of patients with solid tumors.


Vision Research | 2002

Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro

Bradford A. Moffat; David A. Atchison; James M. Pope

We report a new technique for non-invasively mapping the refractive index distribution through the eye lens using magnetic resonance micro-imaging. The technique is applied to map the refractive index distribution throughout the sagittal plane of 18 human eye lenses ranging in age from 14 to 82 years in vitro. The results are compared with standard models for the human eye lens. They confirm that the refractive index distribution, when plotted as a function of normalised lens radius, is a function of lens age and differs both between the equatorial and axial directions and between the anterior and posterior halves of the optical axis. The refractive index of the lens nucleus exhibits a significant reduction with age amounting to 3.4+/-0.6 x 10(-4) years(-1). The contribution of the gradient index (GRIN) to the lens power decreases by 0.286+/-0.067 D/year, accounting almost entirely for the estimated overall change in lens power with age for these lenses, which were probably in their most accommodated state. The results provide experimental verification of hypothesised changes in the GRIN that have previously been invoked as contributing to presbyopia and support the hypothesis that changes in the GRIN are sufficient to offset effects of increasing curvature of human lenses with age in their unaccommodated state.


Magnetic Resonance Materials in Physics Biology and Medicine | 2004

Diffusion imaging for evaluation of tumor therapies in preclinical animal models

Bradford A. Moffat; Daniel E. Hall; Jadranka Stojanovska; Patrick McConville; Jonathan B. Moody; Thomas L. Chenevert; Alnawaz Rehemtulla; Brian D. Ross

The increasing development of novel targeted therapies for treating solid tumors has necessitated the development of technology to determine their efficacy in preclinical animal models. One such technology that can non-invasively quantify early changes in tumor cellularity as a result of an efficacious therapy is diffusion MRI. In this overview we present some theories as to the origin of diffusion changes as a result of tumor therapy, a robust methodology for acquisition of apparent diffusion coefficient maps and some applications of determining therapeutic efficacy in a variety therapeutic regimens and animal models.


Clinical Cancer Research | 2004

Therapeutic Efficacy of DTI-015 using Diffusion Magnetic Resonance Imaging as an Early Surrogate Marker

Daniel E. Hall; Bradford A. Moffat; Jadranka Stojanovska; Timothy D. Johnson; Zhuolin Li; Daniel A. Hamstra; Alnawaz Rehemtulla; Thomas L. Chenevert; Julie Carter; Brian D. Ross

To investigate diffusion weighted magnetic resonance imaging as a quantitative surrogate marker for evaluating the therapy-induced cellular changes in an orthotopic experimental glioma model, tumors were treated with direct intratumoral administration of DTI-015, a solution of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in 100% EtOH. Intracerebral 9L tumors were induced in Fischer 344 rats, and three treatment groups were established: DTI-015, EtOH, and sham. Two groups of rats received intratumoral injection of either 67 mg/mL BCNU in EtOH or EtOH alone at 50% of the tumor volume up to a maximum of 30 μl under stereotactic guidance. Diffusion magnetic resonance images were acquired before treatment and after treatment at 1, 24, 48, and 72 hours and then 3 times per week thereafter. Tumor cell viability was examined using multislice diffusion weighted magnetic resonance imaging with diffusion weighted transverse magnetic resonance images and histogram plots of each tumor quantified over time. Control animals (EtOH- or sham-treated animals) showed mean apparent diffusion coefficients (ADCs) that remained essentially unchanged over the experimental time course. In contrast, rats treated with DTI-015 showed a significant increase in ADC relative to the pretreatment within 24 hours, which further increased over time, followed by a significant therapeutic response as evidenced by subsequent tumor volume shrinkage, development of a cystic region, and enhanced animal survival. Finally, not only were ADC measurements predictive of differences between treatment groups, but they also yielded spatial and temporal data regarding the efficacy of treatment within individual treated animals that could be used to guide subsequent therapy.


Clinical Cancer Research | 2007

Prospective Early Response Imaging Biomarker for Neoadjuvant Breast Cancer Chemotherapy

Kuei C. Lee; Bradford A. Moffat; Anne F. Schott; Rachel Layman; Steven Ellingworth; Rebecca Juliar; Amjad P. Khan; Mark A. Helvie; Charles R. Meyer; Thomas L. Chenevert; Alnawaz Rehemtulla; Brian D. Ross

Purpose: The American Cancer Society estimates that in 2006, 212,920 women will be diagnosed with breast cancer and that 40,970 women will die from the disease. The development of more efficacious chemotherapies has improved outcomes, but the rapid assessment of clinical benefit from these agents remains challenging. In breast cancer patients receiving neoadjuvant chemotherapy, treatment response is traditionally assessed by physical examination and volumetric-based measurements, which are subjective and require macroscopic changes in tumor morphology. In this study, we evaluate the feasibility of using diffusion magnetic resonance imaging (MRI) as a reliable and quantitative measure for the early assessment of response in a breast cancer model. Experimental Design: Mice implanted with human breast cancer (MX-1) were treated with cyclophosphamide and evaluated using diffusion MRI and growth kinetics. Histologic analyses using terminal nucleotidyl transferase–mediated nick end labeling and H&E were done on tumor samples for correlation with imaging results. Results: Cyclophosphamide treatment resulted in a significant reduction in tumor volumes compared with controls. The mean apparent diffusion change for treated tumors at days 4 and 7 posttreatment was 44 ± 5% and 94 ± 7%, respectively, which was statistically greater (P < 0.05) than the control tumors at the same time intervals. The median time-to-progression for control and treated groups was 11 and 32 days, respectively (P < 0.05). Conclusion: Diffusion MRI was shown to detect early changes in the tumor microenvironment, which correlated with standard measures of tumor response as well as overall outcome. Moreover, these findings show the feasibility of using diffusion MRI for assessing treatment response of a breast tumor model in a neoadjuvant setting.


Cancer Research | 2007

An Imaging Biomarker of Early Treatment Response in Prostate Cancer that Has Metastasized to the Bone

Kuei C. Lee; Sudha Sud; Charles R. Meyer; Bradford A. Moffat; Thomas L. Chenevert; Alnawaz Rehemtulla; Kenneth J. Pienta; Brian D. Ross

Prostate cancer ranks as the most common lethal malignancy diagnosed and the second leading cause of cancer mortality in American men. Although high response rates are achieved using androgen blockade as first-line therapy, most men progress toward hormone-refractory prostate cancer. Systemic chemotherapies have been shown to improve clinical outcome in hormone refractory prostate cancer patients; however, they are not curative. Due to the high incidence of bone involvement in hormone-refractory prostate cancer, assessment of treatment response in metastatic prostate cancer to the bone remains a major clinical need. In this current study, we investigated the feasibility of using the functional diffusion map (fDM) as an imaging biomarker for assessing early treatment response in a preclinical model of metastatic prostate cancer. The fDM biomarker requires a pretreatment and midtreatment magnetic resonance imaging diffusion map, which is used to quantify spatially distinct therapeutic-induced changes in the Brownian motion (or diffusion) of water within tumor tissue. Because water within tumor cells is in a restricted environment relative to extracellular water, loss of cell membrane integrity and cellular density during therapy will be detected by fDM as an increase in diffusion. Regions of significantly increased diffusion values were detected early using fDM in docetaxel-treated versus untreated metastatic prostate bone tumors at 7 days post treatment initiation (P < 0.05), indicating loss of tumor cell viability. Validation of fDM results was accomplished by histologic analysis of excised tissue. Results from this study show the capability of fDM as a biomarker for detection of bone cancer treatment efficacy, thus warranting clinical evaluation.


Molecular Imaging | 2006

A Methodology for Registration of a Histological Slide and in vivo MRI Volume based on Optimizing Mutual Information

Charles R. Meyer; Bradford A. Moffat; Kyle Kuszpit; Peyton L. Bland; Paul E. McKeever; Timothy D. Johnson; Thomas L. Chenevert; Alnawaz Rehemtulla; Brian D. Ross

We present a method for registering histology and in vivo imaging that requires minimal microtoming and is automatic following the users initialization. In this demonstration, we register a single hematoxylin-and-eosin-stained histological slide of a coronal section of a rat brain harboring a 9L gliosarcoma with an in vivo 7T MR image volume of the same brain. Because the spatial resolution of the in vivo MRI is limited, we add the step of obtaining a high spatial resolution, ex vivo MRI in situ for intermediate registration. The approach taken was to maximize mutual information in order to optimize the registration between all pairings of image data whether the sources are MRI, tissue block photograph, or stained sample photograph. The warping interpolant used was thin plate splines with the appropriate basis function for either 2-D or 3-D applications. All registrations were implemented by user initialization of the approximate pose between the two data sets, followed by automatic optimization based on maximizing mutual information. Only the higher quality anatomical images were used in the registration process; however, the spatial transformation was directly applied to a quantitative diffusion image. Quantitative diffusion maps from the registered location appeared highly correlated with the H&E slide. Overall, this approach provides a robust method for coregistration of in vivo images with histological sections and will have broad applications in the field of functional and molecular imaging.


Biomaterials | 2012

Metal-free and MRI visible theranostic lyotropic liquid crystal nitroxide-based nanoparticles.

Benjamin W. Muir; Durga P. Acharya; Danielle F. Kennedy; Xavier Mulet; Richard A. Evans; Suzanne M. Pereira; Kim L. Wark; Ben J. Boyd; Tri-Hung Nguyen; Tracey M. Hinton; Lynne J. Waddington; Nigel Kirby; David K. Wright; Hong X. Wang; Gary F. Egan; Bradford A. Moffat

The development of improved, low toxicity, clinically viable nanomaterials that provide MRI contrast have tremendous potential to form the basis of translatable theranostic agents. Herein we describe a class of MRI visible materials based on lyotropic liquid crystal nanoparticles loaded with a paramagnetic nitroxide lipid. These readily synthesized nanoparticles achieved enhanced proton-relaxivities on the order of clinically used gadolinium complexes such as Omniscan™ without the use of heavy metal coordination complexes. Their low toxicity, high water solubility and colloidal stability in buffer resulted in them being well tolerated in vitro and in vivo. The nanoparticles were initially screened in vitro for cytotoxicity and subsequently a defined concentration range was tested in rats to determine the maximum tolerated dose. Pharmacokinetic profiles of the candidate nanoparticles were established in vivo on IV administration to rats. The lyotropic liquid crystal nanoparticles were proven to be effective liver MRI contrast agents. We have demonstrated the effective in vivo performance of a T1 enhancing, biocompatible, colloidally stable, amphiphilic MRI contrast agent that does not contain a metal.

Collaboration


Dive into the Bradford A. Moffat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin W. Muir

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge