Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley D. Preston is active.

Publication


Featured researches published by Bradley D. Preston.


Journal of Virology | 2000

High Rate of Recombination throughout the Human Immunodeficiency Virus Type 1 Genome

Amanda E. Jetzt; Hong Yu; George J. Klarmann; Yacov Ron; Bradley D. Preston; Joseph P. Dougherty

ABSTRACT The diploid nature of human immunodeficiency virus type 1 (HIV-1) indicates that recombination serves a central function in virus replication and evolution. Previously, while examining the nature of obligatory primer strand transfers during reverse transcription, a high rate of recombination was observed at the ends of the viral genome within the viral long terminal repeats, prompting the following question: does recombination occur at a high rate throughout the genome? To address this question, two vectors based upon different strains of HIV-1 were utilized. The vectors were comprised predominantly of autologous HIV-1 sequence and were approximately the same size as the parental genome. The proviral progeny of heterodimeric virions were analyzed after a single cycle of replication, and the sequence heterogeneity between the two strains allowed direct examination of recombination crossovers. The results obtained indicate that HIV-1 undergoes approximately two to three recombination events per genome per replication cycle. These results imply that both HIV-1 RNAs are typically utilized during reverse transcription and that recombination is an important aspect of HIV-1 replication.


Journal of Virology | 2002

Human Immunodeficiency Virus Type 1 Recombination: Rate, Fidelity, and Putative Hot Spots

Jianling Zhuang; Amanda E. Jetzt; Guoli Sun; Hong Yu; George J. Klarmann; Yacov Ron; Bradley D. Preston; Joseph P. Dougherty

ABSTRACT Previously, we reported that human immunodeficiency virus type 1 (HIV-1) recombines approximately two to three times per genome per replication cycle, an extremely high rate of recombination given the relatively small genome size of HIV-1. However, a recombination hot spot involving sequence of nonretroviral origin was identified in the vector system utilized, raising the possibility that this hot spot skewed the rate of recombination, and the rate of recombination observed was an overestimation. To address this issue, an HIV-1-derived vector system was used to examine the rate of recombination between autologous HIV-1 sequences after restricting replication to a single cycle in the absence of this hot spot. Viral DNA and RNA were analyzed by a combination of the heteroduplex tracking assay, restriction enzyme analysis, DNA sequencing, and reverse transcription-PCR. The results indicate that HIV-1 undergoes recombination at a minimum rate of 2.8 crossovers per genome per cycle. Again, this is a very high rate given the small size of the HIV-1 genome. The results also suggested that there might be local hot spots of recombination at different locations throughout the genome since 13 of the 33 strand transfers identified by DNA sequencing shared the same site of recombination with one or two other clones. Furthermore, identification of crossover segments also allowed examination of mutations at the point of recombination, since it has been predicted from some studies of cell-free systems that mutations may occur with a frequency of 30 to 50% at crossover junctions. However, DNA sequence analysis of crossover junctions indicated that homologous recombination during viral replication was not particularly mutagenic, indicating that there are other factors or conditions not yet reproduced in cell-free systems which contribute to fidelity during retroviral recombination.


Proceedings of the National Academy of Sciences of the United States of America | 2009

DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice

Tina M. Albertson; Masanori Ogawa; James M. Bugni; Laura E. Hays; Yang Chen; Yanping Wang; Piper M. Treuting; John A. Heddle; Robert E. Goldsby; Bradley D. Preston

Organisms require faithful DNA replication to avoid deleterious mutations. In yeast, replicative leading- and lagging-strand DNA polymerases (Pols ε and δ, respectively) have intrinsic proofreading exonucleases that cooperate with each other and mismatch repair to limit spontaneous mutation to less than 1 per genome per cell division. The relationship of these pathways in mammals and their functions in vivo are unknown. Here we show that mouse Pol ε and δ proofreading suppress discrete mutator and cancer phenotypes. We found that inactivation of Pol ε proofreading elevates base-substitution mutations and accelerates a unique spectrum of spontaneous cancers; the types of tumors are entirely different from those triggered by loss of Pol δ proofreading. Intercrosses of Pol ε-, Pol δ-, and mismatch repair-mutant mice show that Pol ε and δ proofreading act in parallel pathways to prevent spontaneous mutation and cancer. These findings distinguish Pol ε and δ functions in vivo and reveal tissue-specific requirements for DNA replication fidelity.


Molecular and Cellular Biology | 2007

Mutation at the Polymerase Active Site of Mouse DNA Polymerase δ Increases Genomic Instability and Accelerates Tumorigenesis

Ranga N. Venkatesan; Piper M. Treuting; Evan D. Fuller; Robert E. Goldsby; Thomas H. Norwood; Ted Gooley; Warren C. Ladiges; Bradley D. Preston; Lawrence A. Loeb

ABSTRACT Mammalian DNA polymerase δ (Pol δ) is believed to replicate a large portion of the genome and to synthesize DNA in DNA repair and genetic recombination pathways. The effects of mutation in the polymerase domain of this essential enzyme are unknown. Here, we generated mice harboring an L604G or L604K substitution in highly conserved motif A in the polymerase active site of Pol δ. Homozygous Pold1L604G/L604G and Pold1L604K/L604K mice died in utero. However, heterozygous animals were viable and displayed no overall increase in disease incidence, indicative of efficient compensation for the defective mutant polymerase. The life spans of wild-type and heterozygous Pold1+/L604G mice did not differ, while that of Pold1+/L604K mice was reduced by 18%. Cultured embryonic fibroblasts from the heterozygous strains exhibited comparable increases in both spontaneous mutation rate and chromosome aberrations. We observed no significant increase in cancer incidence; however, Pold1+/L604K mice bearing histologically diagnosed tumors died at a younger median age than wild-type mice. Our results indicate that heterozygous mutation at L604 in the polymerase active site of DNA polymerase δ reduces life span, increases genomic instability, and accelerates tumorigenesis in an allele-specific manner, novel findings that have implications for human cancer.


Seminars in Cancer Biology | 2010

DNA Replication Fidelity and Cancer

Bradley D. Preston; Tina M. Albertson; Alan J. Herr

Cancer is fueled by mutations and driven by adaptive selection. Normal cells avoid deleterious mutations by replicating their genomes with extraordinary accuracy. Here we review the pathways governing DNA replication fidelity and discuss evidence implicating replication errors (point mutation instability or PIN) in carcinogenesis.


Journal of Biological Chemistry | 1998

The Nature of Human Immunodeficiency Virus Type 1 Strand Transfers

Hong Yu; Amanda E. Jetzt; Yacov Ron; Bradley D. Preston; Joseph P. Dougherty

The diploid nature of human immunodeficiency virus type 1 (HIV-1) suggests that recombination serves a central function in virus replication and evolution. A system was developed to examine HIV-1 strand transfers, including the obligatory DNA primer strand transfers as well as recombinational crossovers during reverse transcription. Sequence heterogeneity between different strains of HIV-1 was exploited for examining primer transfer events. Both intra- and intermolecular primer transfers were observed at similar frequencies during minus-strand DNA synthesis, whereas primer transfers during plus-strand DNA synthesis were primarily intramolecular. Sequence analysis of long terminal repeats from progeny proviruses also revealed a high rate of homologous recombination during minus-strand synthesis, corresponding to an overall rate of approximately three crossovers per HIV-1 genome per cycle of replication. These results imply that both viral genomic RNAs serve as templates during HIV-1 reverse transcription and that primer strand transfers and recombination may contribute substantially to the rapid genetic variation of HIV-1.


Journal of Biological Chemistry | 2006

Mutator Phenotypes Caused by Substitution at a Conserved Motif A Residue in Eukaryotic DNA Polymerase

Ranga N. Venkatesan; Jessica J. Hsu; Nicole Lawrence; Bradley D. Preston; Lawrence A. Loeb

Eukaryotic DNA polymerase (Pol) δ replicates chromosomal DNA and is also involved in DNA repair and genetic recombination. Motif A in Pol δ, containing the sequence DXXXLYPSI, includes a catalytically essential aspartic acid as well as other conserved residues of unknown function. Here, we used site-directed mutagenesis to create all 19 amino acid substitutions for the conserved Leu612 in Motif A of Saccharomyces cerevisiae Pol δ. We show that substitutions at Leu612 differentially affect viability, sensitivity to genotoxic agents, cell cycle progression, and replication fidelity. The eight viable mutants contained Ile, Val, Thr, Met, Phe, Lys, Asn, or Gly substitutions. Individual substitutions varied greatly in the nature and extent of attendant phenotypic deficiencies, exhibiting mutation rates that ranged from near wild type to a 37-fold increase. The L612M mutant exhibited a 7-fold elevation of mutation rate but essentially no detectable effects on other phenotypes monitored; the L612T mutant showed a nearly wild type mutation rate together with marked hypersensitivity to genotoxic agents; and the L612G and L612N strains exhibited relatively high mutation rates and severe deficits overall. We compare our results with those for homologous substitutions in prokaryotic and eukaryotic DNA polymerases and discuss the implications of our findings for the role of Leu612 in replication fidelity.


The Journal of Infectious Diseases | 2009

Antiretroviral drug resistance in HIV-2: three amino acid changes are sufficient for classwide nucleoside analogue resistance.

Robert A. Smith; Donovan J. Anderson; Crystal L. Pyrak; Bradley D. Preston; Geoffrey S. Gottlieb

Genotypic surveys suggest that human immunodeficiency virus type 1 (HIV-1) and HIV-2 evolve different sets of mutations in response to nucleoside reverse-transcriptase inhibitors (NRTIs). We used site-directed mutagenesis, culture-based phenotyping, and cell-free assays to determine the resistance profiles conferred by specific amino acid replacements in HIV-2 reverse transcriptase. Although thymidine analogue mutations had no effect on zidovudine sensitivity, the addition of Q151M together with K65R or M184V was sufficient for high-level resistance to both lamivudine and zidovudine in HIV-2, and the combination of K65R, Q151M, and M184V conferred classwide NRTI resistance. These data suggest that current NRTI-based regimens are suboptimal for treating HIV-2 infection.


PLOS Genetics | 2011

Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast

Alan J. Herr; Masanori Ogawa; Nicole A. Lawrence; Lindsey N. Williams; Julie M. Eggington; Mallika Singh; Robert A. Smith; Bradley D. Preston

Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10−3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer.


Nature Methods | 2012

Decoding cell lineage from acquired mutations using arbitrary deep sequencing

Cheryl Ann Carlson; Arnold Kas; Robert Kirkwood; Laura E. Hays; Bradley D. Preston; Stephen J. Salipante; Marshall S. Horwitz

Because mutations are inevitable, the genome of each cell in a multicellular organism becomes unique and therefore encodes a record of its ancestry. Here we coupled arbitrary single primer PCR with next-generation DNA sequencing to catalog mutations and deconvolve the phylogeny of cultured mouse cells. This study helps pave the way toward construction of retrospective cell-fate maps based on mutations accumulating in genomes of somatic cells.

Collaboration


Dive into the Bradley D. Preston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Herr

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Dougherty

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Yacov Ron

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura E. Hays

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge