Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley J. Cardinale is active.

Publication


Featured researches published by Bradley J. Cardinale.


Nature | 2012

Biodiversity loss and its impact on humanity

Bradley J. Cardinale; J. Emmett Duffy; Andrew Gonzalez; David U. Hooper; Charles Perrings; Patrick Venail; Anita Narwani; Georgina M. Mace; David Tilman; David A. Wardle; Ann P. Kinzig; Gretchen C. Daily; Michel Loreau; James B. Grace; Anne Larigauderie; Diane S. Srivastava; Shahid Naeem

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.


Nature | 2006

Effects of biodiversity on the functioning of trophic groups and ecosystems

Bradley J. Cardinale; Diane S. Srivastava; J. Emmett Duffy; Justin P. Wright; Amy L. Downing; Mahesh Sankaran; Claire Jouseau

Over the past decade, accelerating rates of species extinction have prompted an increasing number of studies to reduce species diversity experimentally and examine how this alters the efficiency by which communities capture resources and convert those into biomass. So far, the generality of patterns and processes observed in individual studies have been the subjects of considerable debate. Here we present a formal meta-analysis of studies that have experimentally manipulated species diversity to examine how it affects the functioning of numerous trophic groups in multiple types of ecosystem. We show that the average effect of decreasing species richness is to decrease the abundance or biomass of the focal trophic group, leading to less complete depletion of resources used by that group. At the same time, analyses reveal that the standing stock of, and resource depletion by, the most species-rich polyculture tends to be no different from that of the single most productive species used in an experiment. Of the known mechanisms that might explain these trends, results are most consistent with what is called the ‘sampling effect’, which occurs when diverse communities are more likely to contain and become dominated by the most productive species. Whether this mechanism is widespread in natural communities is currently controversial. Patterns we report are remarkably consistent for four different trophic groups (producers, herbivores, detritivores and predators) and two major ecosystem types (aquatic and terrestrial). Collectively, our analyses suggest that the average species loss does indeed affect the functioning of a wide variety of organisms and ecosystems, but the magnitude of these effects is ultimately determined by the identity of species that are going extinct.


Nature | 2012

A global synthesis reveals biodiversity loss as a major driver of ecosystem change

David U. Hooper; E. Carol Adair; Bradley J. Cardinale; Jarrett E. Byrnes; Bruce A. Hungate; Kristin L. Matulich; Andrew Gonzalez; J. Emmett Duffy; Lars Gamfeldt; Mary I. O’Connor

Evidence is mounting that extinctions are altering key processes important to the productivity and sustainability of Earth’s ecosystems. Further species loss will accelerate change in ecosystem processes, but it is unclear how these effects compare to the direct effects of other forms of environmental change that are both driving diversity loss and altering ecosystem function. Here we use a suite of meta-analyses of published data to show that the effects of species loss on productivity and decomposition—two processes important in all ecosystems—are of comparable magnitude to the effects of many other global environmental changes. In experiments, intermediate levels of species loss (21–40%) reduced plant production by 5–10%, comparable to previously documented effects of ultraviolet radiation and climate warming. Higher levels of extinction (41–60%) had effects rivalling those of ozone, acidification, elevated CO2 and nutrient pollution. At intermediate levels, species loss generally had equal or greater effects on decomposition than did elevated CO2 and nitrogen addition. The identity of species lost also had a large effect on changes in productivity and decomposition, generating a wide range of plausible outcomes for extinction. Despite the need for more studies on interactive effects of diversity loss and environmental changes, our analyses clearly show that the ecosystem consequences of local species loss are as quantitatively significant as the direct effects of several global change stressors that have mobilized major international concern and remediation efforts.


Environmental Science & Technology | 2010

Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices

Arturo A. Keller; Hongtao Wang; Dongxu Zhou; Hunter S. Lenihan; Gary N. Cherr; Bradley J. Cardinale; Robert J. Miller; Zhaoxia Ji

There is a pressing need for information on the mobility of nanoparticles in the complex aqueous matrices found in realistic environmental conditions. We dispersed three different metal oxide nanoparticles (TiO(2), ZnO and CeO(2)) in samples taken from eight different aqueous media associated with seawater, lagoon, river, and groundwater, and measured their electrophoretic mobility, state of aggregation, and rate of sedimentation. The electrophoretic mobility of the particles in a given aqueous media was dominated by the presence of natural organic matter (NOM) and ionic strength, and independent of pH. NOM adsorbed onto these nanoparticles significantly reduces their aggregation, stabilizing them under many conditions. The transition from reaction to diffusion limited aggregation occurs at an electrophoretic mobility from around -2 to -0.8 microm s(-1) V(-1) cm. These results are key for designing and interpreting nanoparticle ecotoxicity studies in various environmental conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Impacts of plant diversity on biomass production increase through time because of species complementarity

Bradley J. Cardinale; Justin P. Wright; Marc W. Cadotte; Ian T. Carroll; Andy Hector; Diane S. Srivastava; Michel Loreau; Jerome J. Weis

Accelerating rates of species extinction have prompted a growing number of researchers to manipulate the richness of various groups of organisms and examine how this aspect of diversity impacts ecological processes that control the functioning of ecosystems. We summarize the results of 44 experiments that have manipulated the richness of plants to examine how plant diversity affects the production of biomass. We show that mixtures of species produce an average of 1.7 times more biomass than species monocultures and are more productive than the average monoculture in 79% of all experiments. However, in only 12% of all experiments do diverse polycultures achieve greater biomass than their single most productive species. Previously, a positive net effect of diversity that is no greater than the most productive species has been interpreted as evidence for selection effects, which occur when diversity maximizes the chance that highly productive species will be included in and ultimately dominate the biomass of polycultures. Contrary to this, we show that although productive species do indeed contribute to diversity effects, these contributions are equaled or exceeded by species complementarity, where biomass is augmented by biological processes that involve multiple species. Importantly, both the net effect of diversity and the probability of polycultures being more productive than their most productive species increases through time, because the magnitude of complementarity increases as experiments are run longer. Our results suggest that experiments to date have, if anything, underestimated the impacts of species extinction on the productivity of ecosystems.


American Journal of Botany | 2011

The functional role of producer diversity in ecosystems

Bradley J. Cardinale; Kristin L. Matulich; David U. Hooper; Jarrett E. Byrnes; Emmett Duffy; Lars Gamfeldt; Patricia Balvanera; Mary I. O'Connor; Andrew Gonzalez

Over the past several decades, a rapidly expanding field of research known as biodiversity and ecosystem functioning has begun to quantify how the worlds biological diversity can, as an independent variable, control ecological processes that are both essential for, and fundamental to, the functioning of ecosystems. Research in this area has often been justified on grounds that (1) loss of biological diversity ranks among the most pronounced changes to the global environment and that (2) reductions in diversity, and corresponding changes in species composition, could alter important services that ecosystems provide to humanity (e.g., food production, pest/disease control, water purification). Here we review over two decades of experiments that have examined how species richness of primary producers influences the suite of ecological processes that are controlled by plants and algae in terrestrial, marine, and freshwater ecosystems. Using formal meta-analyses, we assess the balance of evidence for eight fundamental questions and corresponding hypotheses about the functional role of producer diversity in ecosystems. These include questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems, how primary producer diversity influences the transfer and recycling of biomass to other trophic groups in a food web, and the number of species and spatial /temporal scales at which diversity effects are most apparent. After summarizing the balance of evidence and stating our own confidence in the conclusions, we outline several new questions that must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems.


Nature | 2002

Species diversity enhances ecosystem functioning through interspecific facilitation

Bradley J. Cardinale; Margaret A. Palmer; Scott L. Collins

Facilitation between species is thought to be a key mechanism by which biodiversity affects the rates of resource use that govern the efficiency and productivity of ecosystems; however, there is no direct empirical evidence to support this hypothesis. Here we show that increasing the species diversity of a functional group of aquatic organisms induces facilitative interactions, leading to non-additive changes in resource consumption. We increased the richness and evenness of suspension-feeding caddisfly larvae (Insecta, Trichoptera) in stream mesocosms and found that the increased topographical complexity of the benthic habitat alters patterns of near-bed flow such that the feeding success of individuals is enhanced. Species diversity reduces ‘current shading’ (that is, the deceleration of flow from upstream to downstream neighbours), allowing diverse assemblages to capture a greater fraction of suspended resources than is caught by any species monoculture. The fundamental nature of this form of hydrodynamic facilitation suggests that it is broadly applicable to freshwater and marine habitats; in addition, it has several analogues in terrestrial ecosystems where fluxes of energy and matter can be influenced by biophysical complexity. Thus, changes in species diversity may alter the probability of positive species interactions, resulting in disproportionately large changes in the functioning of ecosystems.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Evolutionary history and the effect of biodiversity on plant productivity

Marc W. Cadotte; Bradley J. Cardinale; Todd H. Oakley

Loss of biological diversity because of extinction is one of the most pronounced changes to the global environment. For several decades, researchers have tried to understand how changes in biodiversity might impact biomass production by examining how biomass correlates with a number of biodiversity metrics (especially the number of species and functional groups). This body of research has focused on species with the implicit assumption that they are independent entities. However, functional and ecological similarities are shaped by patterns of common ancestry, such that distantly related species might contribute more to production than close relatives, perhaps by increasing niche breadth. Here, we analyze 2 decades of experiments performed in grassland ecosystems throughout the world and examine whether the evolutionary relationships among the species comprising a community predict how biodiversity impacts plant biomass production. We show that the amount of phylogenetic diversity within communities explained significantly more variation in plant community biomass than other measures of diversity, such as the number of species or functional groups. Our results reveal how evolutionary history can provide critical information for understanding, predicting, and potentially ameliorating the effects of biodiversity loss and should serve as an impetus for new biodiversity experiments.


Nature | 2011

Biodiversity improves water quality through niche partitioning

Bradley J. Cardinale

Excessive nutrient loading of water bodies is a leading cause of water pollution worldwide, and controlling nutrient levels in watersheds is a primary objective of most environmental policy. Over the past two decades, much research has shown that ecosystems with more species are more efficient at removing nutrients from soil and water than are ecosystems with fewer species. This has led some to suggest that conservation of biodiversity might be a useful tool for managing nutrient uptake and storage, but this suggestion has been controversial, in part because the specific biological mechanisms by which species diversity influences nutrient uptake have not been identified. Here I use a model system of stream biofilms to show that niche partitioning among species of algae can increase the uptake and storage of nitrate, a nutrient pollutant of global concern. I manipulated the number of species of algae growing in the biofilms of 150 stream mesocosms that had been set up to mimic the variety of flow habitats and disturbance regimes that are typical of natural streams. Nitrogen uptake rates, as measured by using 15N-labelled nitrate, increased linearly with species richness and were driven by niche differences among species. As different forms of algae came to dominate each unique habitat in a stream, the more diverse communities achieved a higher biomass and greater 15N uptake. When these niche opportunities were experimentally removed by making all of the habitats in a stream uniform, diversity did not influence nitrogen uptake, and biofilms collapsed to a single dominant species. These results provide direct evidence that communities with more species take greater advantage of the niche opportunities in an environment, and this allows diverse systems to capture a greater proportion of biologically available resources such as nitrogen. One implication is that biodiversity may help to buffer natural ecosystems against the ecological impacts of nutrient pollution.


BioScience | 2004

The Role of Biodiversity in the Functioning of Freshwater and Marine Benthic Ecosystems

Alan P. Covich; Melanie C. Austen; Felix Bärlocher; Eric Chauvet; Bradley J. Cardinale; Catherine L. Biles; Olivier Dangles; Martin Solan; Mark O. Gessner; Bernhard Statzner; Brian Moss

Abstract Empirical studies investigating the role of species diversity in sustaining ecosystem processes have focused primarily on terrestrial plant and soil communities. Eighteen representative studies drawn from post-1999 literature specifically examined how changes in biodiversity affect benthic ecosystem processes. Results from these small-scale, low-diversity manipulative studies indicate that the effects of changes in biodiversity (mostly synonymous with local species richness) are highly variable over space and time and frequently depend on specific biological traits or functional roles of individual species. Future studies of freshwater and marine ecosystems will require the development of new experimental designs at larger spatial and temporal scales. Furthermore, to successfully integrate field and laboratory studies, the derivation of realistic models and appropriate experiments will require approaches different from those already used in terrestrial systems.

Collaboration


Dive into the Bradley J. Cardinale's collaboration.

Top Co-Authors

Avatar

Anita Narwani

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd H. Oakley

University of California

View shared research outputs
Top Co-Authors

Avatar

Anthony R. Ives

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David U. Hooper

Western Washington University

View shared research outputs
Top Co-Authors

Avatar

Kevin Gross

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane S. Srivastava

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge