Bradley K. Alpert
National Institute of Standards and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bradley K. Alpert.
SIAM Journal on Numerical Analysis | 2000
Bradley K. Alpert; Leslie Greengard; Thomas Hagstrom
We present a systematic approach to the computation of exact nonreflecting boundary conditions for the wave equation. In both two and three dimensions, the critical step in our analysis involves convolution with the inverse Laplace transform of the logarithmic derivative of a Hankel function. The main technical result in this paper is that the logarithmic derivative of the Hankel function
Wavelets: a tutorial in theory and applications | 1993
Bradley K. Alpert
H_\nu^{(1)}(z)
IEEE Transactions on Antennas and Propagation | 1998
Ronald C. Wittmann; Bradley K. Alpert; Michael H. Francis
of real order
Review of Scientific Instruments | 2012
D. A. Bennett; Robert D. Horansky; Daniel R. Schmidt; Andrew S. Hoover; Ryan Winkler; Bradley K. Alpert; James A. Beall; W. B. Doriese; J. W. Fowler; C. P. Fitzgerald; G. C. Hilton; K. D. Irwin; V. Kotsubo; J. A. B. Mates; G. C. O’Neil; Michael W. Rabin; Carl D. Reintsema; F. J. Schima; Daniel S. Swetz; Leila R. Vale; Joel N. Ullom
\nu
IEEE Transactions on Antennas and Propagation | 2004
Ronald C. Wittmann; Bradley K. Alpert; Michael H. Francis
can be approximated in the upper half
IEEE Transactions on Microwave Theory and Techniques | 2001
Darren F. Williams; Bradley K. Alpert
z
Journal of Computational and Applied Mathematics | 1995
Bradley K. Alpert
-plane with relative error
IEEE Transactions on Advanced Packaging | 2003
Dylan F. Williams; Bradley K. Alpert; Uwe Arz; David K. Walker; Hartmut Grabinski
\varepsilon
Journal of Low Temperature Physics | 2016
J. W. Fowler; Bradley K. Alpert; W. B. Doriese; Y. I. Joe; G. C. O’Neil; Joel N. Ullom; Daniel S. Swetz
by a rational function of degree
Review of Scientific Instruments | 2013
Bradley K. Alpert; Robert D. Horansky; D. A. Bennett; W. B. Doriese; Joseph W. Fowler; Andrew S. Hoover; Michael W. Rabin; Joel N. Ullom
d \sim O (\log|\nu|\log\frac{1}{\varepsilon}+ \log^2 |\nu| + | \nu |^{-1} \log^2\frac{1}{\varepsilon} )