Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley K. McConnell is active.

Publication


Featured researches published by Bradley K. McConnell.


Journal of Clinical Investigation | 1999

Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice

Bradley K. McConnell; Karen A. Jones; Diane Fatkin; Luis H. Arroyo; Richard T. Lee; Orlando Aristizábal; Daniel H. Turnbull; Dimitrios Georgakopoulos; David A. Kass; Meredith Bond; Hideshi Niimura; Frederick J. Schoen; David A. Conner; Donald H. Fischman; Christine E. Seidman; Jonathan G. Seidman

To elucidate the role of cardiac myosin-binding protein-C (MyBP-C) in myocardial structure and function, we have produced mice expressing altered forms of this sarcomere protein. The engineered mutations encode truncated forms of MyBP-C in which the cardiac myosin heavy chain-binding and titin-binding domain has been replaced with novel amino acid residues. Analogous heterozygous defects in humans cause hypertrophic cardiomyopathy. Mice that are homozygous for the mutated MyBP-C alleles express less than 10% of truncated protein in M-bands of otherwise normal sarcomeres. Homozygous mice bearing mutated MyBP-C alleles are viable but exhibit neonatal onset of a progressive dilated cardiomyopathy with prominent histopathology of myocyte hypertrophy, myofibrillar disarray, fibrosis, and dystrophic calcification. Echocardiography of homozygous mutant mice showed left ventricular dilation and reduced contractile function at birth; myocardial hypertrophy increased as the animals matured. Left-ventricular pressure-volume analyses in adult homozygous mutant mice demonstrated depressed systolic contractility with diastolic dysfunction. These data revise our understanding of the role that MyBP-C plays in myofibrillogenesis during cardiac development and indicate the importance of this protein for long-term sarcomere function and normal cardiac morphology. We also propose that mice bearing homozygous familial hypertrophic cardiomyopathy-causing mutations may provide useful tools for predicting the severity of disease that these mutations will cause in humans.


Journal of Clinical Investigation | 2000

An abnormal Ca2+ response in mutant sarcomere protein–mediated familial hypertrophic cardiomyopathy

Diane Fatkin; Bradley K. McConnell; James O. Mudd; Christopher Semsarian; Ivan G.P. Moskowitz; Frederick J. Schoen; Michael Giewat; Christine E. Seidman; J. G. Seidman

Dominant-negative sarcomere protein gene mutations cause familial hypertrophic cardiomyopathy (FHC), a disease characterized by left-ventricular hypertrophy, angina, and dyspnea that can result in sudden death. We report here that a murine model of FHC bearing a cardiac myosin heavy-chain gene missense mutation (αMHC403/+), when treated with calcineurin inhibitors or a K+-channel agonist, developed accentuated hypertrophy, worsened histopathology, and was at risk for early death. Despite distinct pharmacologic targets, each agent augmented diastolic Ca2+ concentrations in wild-type cardiac myocytes; αMHC403/+ myocytes failed to respond. Pretreatment with a Ca2+-channel antagonist abrogated diastolic Ca2+ changes in wild-type myocytes and prevented the exaggerated hypertrophic response of treated αMHC403/+ mice. We conclude that FHC-causing sarcomere protein gene mutations cause abnormal Ca2+ responses that initiate a hypertrophic response. These data define an important Ca2+-dependent step in the pathway by which mutant sarcomere proteins trigger myocyte growth and remodel the heart, provide definitive evidence that environment influences progression of FHC, and suggest a rational therapeutic approach to this prevalent human disease.


Journal of Clinical Investigation | 2003

Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy.

Qiujing Song; Albrecht Schmidt; Harvey S. Hahn; Andrew N. Carr; Beate Frank; Luke Pater; Mike Gerst; Karen Young; Brian D. Hoit; Bradley K. McConnell; Kobra Haghighi; Christine E. Seidman; Jonathan G. Seidman; Gerald W. Dorn; Evangelia G. Kranias

Cardiac hypertrophy, either compensated or decompensated, is associated with cardiomyocyte contractile dysfunction from depressed sarcoplasmic reticulum (SR) Ca(2+) cycling. Normalization of Ca(2+) cycling by ablation or inhibition of the SR inhibitor phospholamban (PLN) has prevented cardiac failure in experimental dilated cardiomyopathy and is a promising therapeutic approach for human heart failure. However, the potential benefits of restoring SR function on primary cardiac hypertrophy, a common antecedent of human heart failure, are unknown. We therefore tested the efficacy of PLN ablation to correct hypertrophy and contractile dysfunction in two well-characterized and highly relevant genetic mouse models of hypertrophy and cardiac failure, Galphaq overexpression and human familial hypertrophic cardiomyopathy mutant myosin binding protein C (MyBP-C(MUT)) expression. In both models, PLN ablation normalized the characteristically prolonged cardiomyocyte Ca(2+) transients and enhanced unloaded fractional shortening with no change in SR Ca(2+) pump content. However, there was no parallel improvement in in vivo cardiac function or hypertrophy in either model. Likewise, the activation of JNK and calcineurin associated with Galphaq overexpression was not affected. Thus, PLN ablation normalized contractility in isolated myocytes, but failed to rescue the cardiomyopathic phenotype elicited by activation of the Galphaq pathway or MyBP-C mutations.


Journal of Clinical Investigation | 1999

Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the α cardiac myosin heavy chain gene

Diane Fatkin; Michael E. Christe; Orlando Aristizábal; Bradley K. McConnell; Shardha Srinivasan; Frederick J. Schoen; Christine E. Seidman; Daniel H. Turnbull; J. G. Seidman

Heterozygous mice bearing an Arg403Gln missense mutation in the alpha cardiac myosin heavy chain gene (alpha-MHC403/+) exhibit the histopathologic features of human familial hypertrophic cardiomyopathy. Surprisingly, homozygous alpha-MHC403/403 mice die by postnatal day 8. Here we report that neonatal lethality is caused by a fulminant dilated cardiomyopathy characterized by myocyte dysfunction and loss. Heart tissues from neonatal wild-type and alpha-MHC403/403 mice demonstrate equivalent switching of MHC isoforms; alpha isoforms in each increase from 30% at birth to 70% by day 6. Cardiac dimensions and function, studied for the first time in neonatal mice by high frequency (45 MHz) echocardiography, were normal at birth. Between days 4 and 6, alpha-MHC403/403 mice developed a rapidly progressive cardiomyopathy with left ventricular dilation, wall thinning, and reduced systolic contraction. Histopathology revealed myocardial necrosis with dystrophic calcification. Electron microscopy showed normal architecture intermixed with focal myofibrillar disarray. We conclude that 45-MHz echocardiography is an excellent tool for assessing cardiac physiology in neonatal mice and that the concentration of Gln403 alpha cardiac MHC in myocytes influences both cell function and cell viability. We speculate that variable incorporation of mutant and normal MHC into sarcomeres of heterozygotes may account for focal myocyte death in familial hypertrophic cardiomyopathy.


Circulation Research | 2001

Comparison of Two Murine Models of Familial Hypertrophic Cardiomyopathy

Bradley K. McConnell; Diane Fatkin; Christopher Semsarian; Karen A. Jones; Dimitrios Georgakopoulos; Colin T. Maguire; Michael J. Healey; James O. Mudd; Ivan P. Moskowitz; David A. Conner; Michael Giewat; Hiroko Wakimoto; Charles I. Berul; Frederick J. Schoen; David A. Kass; Christine E. Seidman; Jonathan G. Seidman

Abstract— Although sarcomere protein gene mutations cause familial hypertrophic cardiomyopathy (FHC), individuals bearing a mutant cardiac myosin binding protein C (MyBP-C) gene usually have a better prognosis than individuals bearing &bgr;-cardiac myosin heavy chain (MHC) gene mutations. Heterozygous mice bearing a cardiac MHC missense mutation (&agr;MHC403/+ or a cardiac MyBP-C mutation (MyBP-Ct/+) were constructed as murine FHC models using homologous recombination in embryonic stem cells. We have compared cardiac structure and function of these mouse strains by several methods to further define mechanisms that determine the severity of FHC. Both strains demonstrated progressive left ventricular (LV) hypertrophy; however, by age 30 weeks, &agr;MHC403/+ mice demonstrated considerably more LV hypertrophy than MyBP-Ct/+ mice. In older heterozygous mice, hypertrophy continued to be more severe in the &agr;MHC403/+ mice than in the MyBP-Ct/+ mice. Consistent with this finding, hearts from 50-week-old &agr;MHC403/+ mice demonstrated increased expression of molecular markers of cardiac hypertrophy, but MyBP-Ct/+ hearts did not demonstrate expression of these molecular markers until the mice were >125 weeks old. Electrophysiological evaluation indicated that MyBP-Ct/+ mice are not as likely to have inducible ventricular tachycardia as &agr;MHC403/+ mice. In addition, cardiac function of &agr;MHC403/+ mice is significantly impaired before the development of LV hypertrophy, whereas cardiac function of MyBP-Ct/+ mice is not impaired even after the development of cardiac hypertrophy. Because these murine FHC models mimic their human counterparts, we propose that similar murine models will be useful for predicting the clinical consequences of other FHC-causing mutations. These data suggest that both electrophysiological and cardiac function studies may enable more definitive risk stratification in FHC patients.


Anesthesia & Analgesia | 2000

The effects of propofol on the contractility of failing and nonfailing human heart muscles.

Juraj Sprung; Monique L. Ogletree-Hughes; Bradley K. McConnell; Daniel R. Zakhary; Shannon M. Smolsky; Christine S. Moravec

We determined the direct effects of propofol on the contractility of human nonfailing atrial and failing atrial and ventricular muscles. Atrial and ventricular trabecular muscles were obtained from the failing human hearts of transplant patients or from nonfailing hearts of patients undergoing coronary artery bypass surgery. Isometric contraction variables were recorded before and after propofol was added to the bath in concentrations between 0.056 and 560 microM. The effects of propofol were compared with its commercial vehicle intralipid. To test beta-adrenergic effects in the presence of propofol, 1 microM isoproterenol was added at the end of each experiment. To determine the cellular mechanisms responsible for the actions of propofol, we examined its effects on actomyosin ATPase activity and sarcoplasmic reticulum (SR) Ca(2+) uptake in nonfailing atrial tissues. Propofol caused a concentration-dependent decrease in maximal developed tension in all muscles, which became significant (P < 0.05) at concentrations exceeding the clinical range (> or =56 microM). Isoproterenol restored contractility to the level achieved before exposure to propofol (P > 0.05 compared with baseline). Failing ventricular muscle exposed to propofol exhibited somewhat diminished ability to recover contractility in response to isoproterenol (P < 0.05 versus failing muscle exposed to intralipid only). Propofol induced a concentration-dependent decrease in the uptake of Ca(2+) into SR vesicles. At the same time, in the presence of 56 microM propofol, the Ca(2+)-activated actomyosin ATPase activity was shifted leftward, demonstrating an increase in myofilament sensitivity to Ca(2+). We conclude that propofol exerts a direct negative inotropic effect in nonfailing and failing human myocardium, but only at concentrations larger than typical clinical concentrations. Negative inotropic effects are reversible with beta-adrenergic stimulation. The negative inotropic effect of propofol is at least partially mediated by decreased Ca(2+) uptake into the SR; however, the net effect of propofol on contractility is insignificant at clinical concentrations because of a simultaneous increase in the sensitivity of the myofilaments to activator Ca(2+).


Journal of Biological Chemistry | 2009

Disruption of Protein Kinase A Interaction with A-kinase-anchoring Proteins in the Heart in Vivo EFFECTS ON CARDIAC CONTRACTILITY, PROTEIN KINASE A PHOSPHORYLATION, AND TROPONIN I PROTEOLYSIS

Bradley K. McConnell; Zoran B. Popović; Niladri Mal; Kwangdeok Lee; James Bautista; Farhad Forudi; Raúl A. Schwartzman; Jian Ping Jin; Marc S. Penn; Meredith Bond

Protein kinase A (PKA)-dependent phosphorylation is regulated by targeting of PKA to its substrate as a result of binding of regulatory subunit, R, to A-kinase-anchoring proteins (AKAPs). We investigated the effects of disrupting PKA targeting to AKAPs in the heart by expressing the 24-amino acid regulatory subunit RII-binding peptide, Ht31, its inactive analog, Ht31P, or enhanced green fluorescent protein by adenoviral gene transfer into rat hearts in vivo. Ht31 expression resulted in loss of the striated staining pattern of type II PKA (RII), indicating loss of PKA from binding sites on endogenous AKAPs. In the absence of isoproterenol stimulation, Ht31-expressing hearts had decreased +dP/dtmax and -dP/dtmin but no change in left ventricular ejection fraction or stroke volume and decreased end diastolic pressure versus controls. This suggests that cardiac output is unchanged despite decreased +dP/dt and -dP/dt. There was also no difference in PKA phosphorylation of cardiac troponin I (cTnI), phospholamban, or ryanodine receptor (RyR2). Upon isoproterenol infusion, +dP/dtmax and -dP/dtmin did not differ between Ht31 hearts and controls. At higher doses of isoproterenol, left ventricular ejection fraction and stroke volume increased versus isoproterenol-stimulated controls. This occurred in the context of decreased PKA phosphorylation of cTnI, RyR2, and phospholamban versus controls. We previously showed that expression of N-terminal-cleaved cTnI (cTnI-ND) in transgenic mice improves cardiac function. Increased cTnI N-terminal truncation was also observed in Ht31-expressing hearts versus controls. Increased cTnI-ND may help compensate for reduced PKA phosphorylation as occurs in heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 1999

An α-cardiac myosin heavy chain gene mutation impairs contraction and relaxation function of cardiac myocytes

Song Jung Kim; Kenji Iizuka; Ralph A. Kelly; Yong Jian Geng; Sanford P. Bishop; Guiping Yang; Amelia Kudej; Bradley K. McConnell; Christine E. Seidman; Jonathan G. Seidman; S. F. Vatner

Left Ventricular (LV) myocytes were isolated from 15-wk-old male mice bearing the Arg403 → Gln α-cardiac myosin heavy chain missense mutation (α-MHC403/+), a model of familial hypertrophic cardiomyopathy. LV myocytes were classified morphologically: type I, rod shaped with parallel myofibrils; type II, irregularly shaped, shorter and wider than wild-type (WT) control cells, with parallel myofibrils; and type III, irregularly shaped with disoriented myofibrils. Compared with WT myocytes, α-MHC403/+ myocytes had fewer type I cells (WT = 74 ± 3%, α-MHC403/+ = 41 ± 4%, P < 0.01) and more type III cells (WT= 12 ± 3%, α-MHC403/+ = 49 ± 7%, P < 0.01). In situ histology also demonstrated marked myofibrillar disarray in the α-MHC403/+ hearts. With the use of video edge detection, myocytes were paced at 1 Hz (37°C) to determine the effects of the mutation on myocyte function. End-diastolic length was reduced in mutant myocytes, but fractional shortening (% contraction) and sarcomere length were not. Velocity of contraction (-d L/d t max) was depressed in mutant cells, but more in type II and III cells (-31%) than in type I cells (-18%). Velocity of relaxation (+d L/d t) was also depressed more in type II and III cells (-38%) than in type I cells (-16%). Using fura 2 dye with intracellular Ca2+ transients, we demonstrated that in α-MHC403/+ myocytes, the amplitude of the Ca2+ signal during contraction was unchanged but that the time required for decay of the signal to decrease 70% from its maximum was delayed significantly (WT = 159 ± 8 ms; α-MHC403/+ = 217 ± 14 ms, P < 0.01). Sarco(endo)plasmic reticulum Ca2+-ATPase mRNA levels in α-MHC403/+ and WT mice were similar. These data indicate that the altered cardiac dysfunction of α-MHC403/+ myocytes is directly due to defective myocyte function rather than to secondary changes in global cardiac function and/or loading conditions.


Journal of Visualized Experiments | 2011

Acute Myocardial Infarction in Rats

Yewen Wu; Xing Yin; Cori Wijaya; Ming-He Huang; Bradley K. McConnell

With heart failure leading the cause of death in the USA (Hunt), biomedical research is fundamental to advance medical treatments for cardiovascular diseases. Animal models that mimic human cardiac disease, such as myocardial infarction (MI) and ischemia-reperfusion (IR) that induces heart failure as well as pressure-overload (transverse aortic constriction) that induces cardiac hypertrophy and heart failure (Goldman and Tarnavski), are useful models to study cardiovascular disease. In particular, myocardial ischemia (MI) is a leading cause for cardiovascular morbidity and mortality despite controlling certain risk factors such as arteriosclerosis and treatments via surgical intervention (Thygesen). Furthermore, an acute loss of the myocardium following myocardial ischemia (MI) results in increased loading conditions that induces ventricular remodeling of the infarcted border zone and the remote non-infarcted myocardium. Myocyte apoptosis, necrosis and the resultant increased hemodynamic load activate multiple biochemical intracellular signaling that initiates LV dilatation, hypertrophy, ventricular shape distortion, and collagen scar formation. This pathological remodeling and failure to normalize the increased wall stresses results in progressive dilatation, recruitment of the border zone myocardium into the scar, and eventually deterioration in myocardial contractile function (i.e. heart failure). The progression of LV dysfunction and heart failure in rats is similar to that observed in patients who sustain a large myocardial infarction, survive and subsequently develops heart failure (Goldman). The acute myocardial infarction (AMI) model in rats has been used to mimic human cardiovascular disease; specifically used to study cardiac signaling mechanisms associated with heart failure as well as to assess the contribution of therapeutic strategies for the treatment of heart failure. The method described in this report is the rat model of acute myocardial infarction (AMI). This model is also referred to as an acute ischemic cardiomyopathy or ischemia followed by reperfusion (IR); which is induced by an acute 30-minute period of ischemia by ligation of the left anterior descending artery (LAD) followed by reperfusion of the tissue by releasing the LAD ligation (Vasilyev and McConnell). This protocol will focus on assessment of the infarct size and the area-at-risk (AAR) by Evans blue dye and triphenyl tetrazolium chloride (TTC) following 4-hours of reperfusion; additional comments toward the evaluation of cardiac function and remodeling by modifying the duration of reperfusion, is also presented. Overall, this AMI rat animal model is useful for studying the consequence of a myocardial infarction on cardiac pathophysiological and physiological function.


Molecular and Cellular Biochemistry | 2004

Reduced cross-bridge dependent stiffness of skinned myocardium from mice lacking cardiac myosin binding protein-C

Bradley M. Palmer; Bradley K. McConnell; Guo Hua Li; Christine E. Seidman; J.G. Seidman; Thomas C. Irving; Norman R. Alpert; David W. Maughan

The role of cardiac myosin binding protein-C (MyBP-C) on myocardial stiffness was examined in skinned papillary muscles of wild-type (WT+/+) and homozygous truncated cardiac MyBP-C (MyBP-Ct/t) male mice. No MyBP-C was detected by gel electrophoresis or by Western blots in the MyBP-Ct/t myocardium. Rigor-bridge dependent myofilament stiffness, i.e., rigor minus relaxed stiffness, in the MyBP-Ct/t myocardium (281 ± 44 kN/m2) was 44% that in WT+/+ (633 ± 141 kN/m2). The center-to-center spacing between thick filaments as determined by X-ray diffraction in MyBP-Ct/t (45.0 ± 1.2 nm) was not significantly different from that in WT+/+ (43.2 ± 0.9 nm). The fraction of cross-sectional area comprised of myofibrils, as determined by electron microscopy, was reduced in the MyBP-Ct/t (39.9%) by 10% compared to WT+/+ (44.5%). These data suggest that the 56% reduction in rigor-bridge dependent stiffness of the skinned MyBP-Ct/t myocardium could not be due solely to a 10% reduction in the number of thick filaments per cross-sectional area and must also be due to approximately 50% reduction in the stiffness of the rigor-bridge attached thick filaments lacking MyBP-C. (Mol Cell Biochem 263: 73–80, 2004)

Collaboration


Dive into the Bradley K. McConnell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine E. Seidman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abeer Rababa'h

Jordan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ashley N. Guillory

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge