Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley P. Dixon is active.

Publication


Featured researches published by Bradley P. Dixon.


Blood | 2013

Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy

Sonata Jodele; Christoph Licht; Jens Goebel; Bradley P. Dixon; Kejian Zhang; Theru A. Sivakumaran; Stella M. Davies; Fred G. Pluthero; Lily Lu; Benjamin L. Laskin

Hematopoietic stem cell transplant (HSCT)-associated thrombotic microangiopathy (TMA) is a complication that occurs in 25% to 35% of HSCT recipients and shares histomorphologic similarities with hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). The hallmark of all thrombotic microangiopathies is vascular endothelial cell injury of various origins, resulting in microangiopathic hemolytic anemia, platelet consumption, fibrin deposition in the microcirculation, and tissue damage. Although significant advances have been made in understanding the pathogenesis of other thrombotic microangiopathies, post-HSCT TMA remains poorly understood. We report an analysis of the complement alternative pathway, which has recently been linked to the pathogenesis of both the Shiga toxin mediated and the atypical forms of HUS, with a focus on genetic variations in the complement Factor H (CFH) gene cluster and CFH autoantibodies in six children with post-HSCT TMA. We identified a high prevalence of deletions in CFH-related genes 3 and 1 (delCFHR3-CFHR1) and CFH autoantibodies in these patients with HSCT-TMA. Conversely, CFH autoantibodies were not detected in 18 children undergoing HSCT who did not develop TMA. Our observations suggest that complement alternative pathway dysregulation may be involved in the pathogenesis of post-HSCT TMA. These findings shed light on a novel mechanism of endothelial injury in transplant-TMA and may therefore guide the development of targeted treatment interventions.


Biology of Blood and Marrow Transplantation | 2014

Eculizumab Therapy in Children with Severe Hematopoietic Stem Cell Transplantation–Associated Thrombotic Microangiopathy

Sonata Jodele; Tsuyoshi Fukuda; Alexander A. Vinks; Kana Mizuno; Benjamin L. Laskin; Jens Goebel; Bradley P. Dixon; Ashley Teusink; Fred G. Pluthero; Lily Lu; Christoph Licht; Stella M. Davies

We recently observed that dysregulation of the complement system may be involved in the pathogenesis of hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA). These findings suggest that the complement inhibitor eculizumab could be a therapeutic option for this severe HSCT complication with high mortality. However, the efficacy of eculizumab in children with HSCT-TMA and its dosing requirements are not known. We treated 6 children with severe HSCT-TMA using eculizumab and adjusted the dose to achieve a therapeutic level >99 μg/mL. HSCT-TMA resolved over time in 4 of 6 children after achieving therapeutic eculizumab levels and complete complement blockade, as measured by low total hemolytic complement activity (CH50). To achieve therapeutic drug levels and a clinical response, children with HSCT-TMA required higher doses or more frequent eculizumab infusions than currently recommended for children with atypical hemolytic uremic syndrome. Two critically ill patients failed to reach therapeutic eculizumab levels, even after dose escalation, and subsequently died. Our data indicate that eculizumab may be a therapeutic option for HSCT-TMA, but HSCT patients appear to require higher medication dosing than recommended for other conditions. We also observed that a CH50 level ≤ 4 complement activity enzyme units correlated with therapeutic eculizumab levels and clinical response, and therefore CH50 may be useful to guide eculizumab dosing in HSCT patients as drug level monitoring is not readily available.


Nephron Experimental Nephrology | 2011

Tuberous sclerosis complex renal disease.

Bradley P. Dixon; John C. Hulbert; John J. Bissler

Although not as common as other genetic renal diseases such as autosomal dominant polycystic kidney disease, patients with tuberous sclerosis complex frequently have significant renal involvement. Recent revelations in the cell biology of these renal disease manifestations as well as effective therapies for tuberous sclerosis complex-related renal issues have heralded hope of improved renal survival and improved quality of life for the TSC patient. This review specifically addresses some of the major renal manifestations of this disease.


Blood Reviews | 2015

A new paradigm: Diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury

Sonata Jodele; Benjamin L. Laskin; Christopher E. Dandoy; Kasiani C. Myers; Javier El-Bietar; Stella M. Davies; Jens Goebel; Bradley P. Dixon

Hematopoietic stem cell transplantation (HSCT)-associated thrombotic microangiopathy (TA-TMA) is now a well-recognized and potentially severe complication of HSCT that carries a high risk of death. In those who survive, TA-TMA may be associated with long-term morbidity and chronic organ injury. Recently, there have been new insights into the incidence, pathophysiology, and management of TA-TMA. Specifically, TA-TMA can manifest as a multi-system disease occurring after various triggers of small vessel endothelial injury, leading to subsequent tissue damage in different organs. While the kidney is most commonly affected, TA-TMA involving organs such as the lung, bowel, heart, and brain is now known to have specific clinical presentations. We now review the most up-to-date research on TA-TMA, focusing on the pathogenesis of endothelial injury, the diagnosis of TA-TMA affecting the kidney and other organs, and new clinical approaches to the management of this complication after HSCT.


American Journal of Physiology-renal Physiology | 2014

Evidence for pericyte origin of TSC-associated renal angiomyolipomas and implications for angiotensin receptor inhibition therapy

Brian J. Siroky; Hong Yin; Bradley P. Dixon; Ryan J Reichert; Anna R. Hellmann; Thiruvamoor Ramkumar; Zenta Tsuchihashi; Marlene A. Bunni; Joshua Dillon; P. Darwin Bell; Julian Roy Sampson; John J. Bissler

Nearly all patients with tuberous sclerosis complex (TSC) develop renal angiomyolipomas, although the tumor cell of origin is unknown. We observed decreased renal angiomyolipoma development in patients with TSC2- polycystic kidney disease 1 deletion syndrome and hypertension that were treated from an early age with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers compared with patients who did not receive this therapy. TSC-associated renal angiomyolipomas expressed ANG II type 1 receptors, platelet-derived growth factor receptor-β, desmin, α-smooth muscle actin, and VEGF receptor 2 but did not express the adipocyte marker S100 or the endothelial marker CD31. Sera of TSC patients exhibited increased vascular mural cell-secreted peptides, such as VEGF-A, VEGF-D, soluble VEGF receptor 2, and collagen type IV. These findings suggest that angiomyolipomas may arise from renal pericytes. ANG II treatment of angiomyolipoma cells in vitro resulted in an exaggerated intracellular Ca(2+) response and increased proliferation, which were blocked by the ANG II type 2 receptor antagonist valsartan. Blockade of ANG II signaling may have preventative therapeutic potential for angiomyolipomas.


American Journal of Physiology-renal Physiology | 2012

Human TSC-associated renal angiomyolipoma cells are hypersensitive to ER stress.

Brian J. Siroky; Hong Yin; Justin T. Babcock; Lu Lu; Anna R. Hellmann; Bradley P. Dixon; Lawrence A. Quilliam; John J. Bissler

Tuberous sclerosis complex (TSC), an inherited tumor predisposition syndrome associated with mutations in TSC1 or TSC2, affects ∼1 in 6,000 individuals. Eighty percent of TSC patients develop renal angiomyolipomas, and renal involvement is a major contributor to patient morbidity and mortality. Recent work has shown that mammalian target of rapamycin complex 1 (mTORC1) inhibition caused angiomyolipoma shrinkage but that this treatment may cause cytostatic not a cytotoxic effect. Endoplasmic reticulum (ER) stress can develop in TSC-associated cells due to mTORC1-driven protein translation. We hypothesized that renal angiomyolipoma cells experience ER stress that can be leveraged to result in targeted cytotoxicity. We used immortalized human angiomyolipoma cells stably transfected with empty vector or TSC2 (encoding tuberin). Using cell number quantification and cell death assays, we found that mTORC1 inhibition with RAD001 suppressed angiomyolipoma cell proliferation in a cytostatic manner. Angiomyolipoma cells exhibited enhanced sensitivity to proteasome inhibitor-induced ER stress compared with TSC2-rescued cells. After proteasome inhibition with MG-132, Western blot analyses showed greater induction of C/EBP-homologous protein (CHOP) and more poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage, supporting ER stress-induced apoptosis. Live cell numbers also were decreased and cell death increased by MG-132 in angiomyolipoma cells compared with TSC2 rescued. Intriguingly, while pretreatment of angiomyolipoma cells with RAD001 attenuated CHOP and BiP induction, apoptotic markers cleaved PARP and caspase-3 and eukaryotic translation initiation factor 2α phosphorylation were increased, along with evidence of increased autophagy. These results suggest that human angiomyolipoma cells are uniquely susceptible to agents that exacerbate ER stress and that additional synergy may be achievable with targeted combination therapy.


Pediatric Nephrology | 2005

A mechanistic approach to inherited polycystic kidney disease

John J. Bissler; Bradley P. Dixon

There are approximately six and a half million people, of the estimated world population of six billion, with inherited polycystic kidney disease. Polycystic kidney diseases have a broad spectrum of associated findings that distinguish and define them as specific disease states. The dysregulation of renal tubular epithelial cell biology, including cell polarity, cell signaling, proliferation and apoptosis, basement membrane and matrix abnormalities, and fluid transport, has been postulated to contribute to cystogenesis. Evidence is currently accumulating that supports an association of the primary cilium and basal body, as well as the focal adhesion assembly, with polycystic kidney diseases. Renal cystogenesis may be the result of a disruption of a critical feedback loop that regulates tissue morphology based on the epithelial cell environment.


Mutation Research | 2008

RecQ and RecG helicases have distinct roles in maintaining the stability of polypurine.polypyrimidine sequences.

Bradley P. Dixon; Lu Lu; Albert Chu; John J. Bissler

DNA triplex structures can block the replication fork and result in double-stranded DNA breaks (DSBs). RecQ and RecG helicases may be important for replication of such sequences as RecQ resolves synthetic triplex DNA structures and RecG mediates replication restart by fork regression. Primer extension on an 88 bp triplex-forming polypurine.polypyrimidine (Pu.Py) tract from the PKD1 gene demonstrated that RecQ, but not RecG, facilitated primer extension by T7 DNA polymerase. A high-throughput, dual plasmid screening system using isogenic bacterial lines deficient in RecG, RecQ, or both, revealed that RecQ deficiency increased mutation to sequence flanking this 88 bp tract by eight to ten-fold. Although RecG facilitated small deletions in an 88 bp mirror repeat-containing sequence, it was absolutely required to maintain a 2.5 kb Pu.Py tract containing multiple mirror repeats. These results support a two-tiered model where RecQ facilitates fork progression through triplex-forming tracts and, failing processivity, RecG is critical for replication fork restart.


PLOS ONE | 2011

Cell Cycle Control and DNA Damage Response of Conditionally Immortalized Urothelial Cells

Bradley P. Dixon; Jeff Henry; Brian J. Siroky; Albert Chu; Pamela A. Groen; John J. Bissler

Background Children with complex urogenital anomalies often require bladder reconstruction. Gastrointestinal tissues used in bladder augmentations exhibit a greatly increased risk of malignancy, and the bladder microenvironment may play a role in this carcinogenesis. Investigating the influences of the bladder microenvironment on gastrointestinal and urothelial cell cycle checkpoint activation and DNA damage response has been limited by the lack of an appropriate well-differentiated urothelial cell line system. Methodology/Principal Findings To meet this need, we have developed a well-differentiated conditionally immortalized urothelial cell line by isolating it from the H-2Kb-tsA58 transgenic mouse. These cells express a thermosensitive SV40 large T antigen that can be deactivated by adjustment of cell culture conditions, allowing the cell line to regain normal control of the cell cycle. The isolated urothelial cell line demonstrates a polygonal, dome-shaped morphology, expresses cytokeratin 18, and exhibits well-developed tight junctions. Adaptation of the urothelial cell line to hyperosmolal culture conditions induces expression of both cytokeratin 20 and uroplakin II, markers of a superficial urothelial cell or “umbrella cell.” This cell line can be maintained indefinitely in culture under permissive conditions but when cultured under non-permissive conditions, large T antigen expression is reduced substantially, leading to increased p53 activity and reduced cellular proliferation. Conclusions/Significance This new model of urothelial cells, along with gastrointestinal cell lines previously derived from the H-2Kb-tsA58 transgenic mouse, will be useful for studying the potential mechanisms of carcinogenesis of the augmented bladder.


The Journal of Pediatrics | 2017

Improvement in Renal Cystic Disease of Tuberous Sclerosis Complex After Treatment with Mammalian Target of Rapamycin Inhibitor

Brian J. Siroky; Alexander J. Towbin; Andrew T. Trout; Hannah Schäfer; Anna R. Thamann; Karen Agricola; Cynthia Tudor; Jamie K. Capal; Bradley P. Dixon; Darcy A. Krueger; David Neal Franz

Renal cysts occur in approximately 50% of patients with tuberous sclerosis complex, but their clinical significance and response to treatment are unknown. Abdominal imaging of 15 patients with tuberous sclerosis complex-associated renal cystic disease who had received mammalian target of rapamycin inhibitor therapy for other tuberous sclerosis complex-related indications was evaluated. Reductions in cyst number, sum diameter, and volume were observed.

Collaboration


Dive into the Bradley P. Dixon's collaboration.

Top Co-Authors

Avatar

John J. Bissler

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Sonata Jodele

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stella M. Davies

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brian J. Siroky

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin L. Laskin

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Christopher E. Dandoy

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jens Goebel

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Albert Chu

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lu Lu

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alexander A. Vinks

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge