Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley W. McIntyre is active.

Publication


Featured researches published by Bradley W. McIntyre.


Cell | 1989

Identification of a murine Peyer's patch—specific lymphocyte homing receptor as an integrin molecule with an α chain homologous to human VLA-4α

Bernhard Holzmann; Bradley W. McIntyre; Irving L. Weissman

Abstract Lymphocyte homing is controlled by organ-specific interactions of lymphocytes and high endothelial venules (HEV). Adhesion of lymphocytes to Peyers patch HEV, but not to peripheral node HEV, is inhibited by an antibody recognizing the murine lymphocyte antigen LPAM-1. Lymphoma cell variants were selected on the FACS for differences in LPAM-1 expression: the binding capacity of these variants to Peyers patch HEV directly correlates with the level of LPAM-1 expression. The anti-LPAM-1 antibody recognizes the α subunit of an M r 160,000/130,000 cell surface αβ heterodimer. The association of LPAM-1 α and β chains requires the presence of Ca 2+ ions. Proteins of M r 84,000 and M r 62,000 present in LPAM-1 immunoprecipitates appear to be products of the proteolytic processing of α chains. The structure of LPAM-1 is virtually identical to that of the human integrin receptor VLA-4. The cross-reactivity of a monospecific rabbit antiserum demonstrated the similarity between the human VLA-4 α chain and the α subunit of LPAM-1.


Cell | 1983

The major histocompatibility complex-restricted antigen receptor on T cells in mouse and man: Identification of constant and variable peptides

John W. Kappler; Ralph T. Kubo; Kathryn Haskins; Charles Hannum; Philippa Marrack; Michele Pigeon; Bradley W. McIntyre; James P. Allison; Ian S. Trowbridge

The variability of the MHC restricted receptor on murine T cells was examined by comparing tryptic peptide fingerprints of the receptor isolated fom three T cell hybridomas and a T cell tumor. Both variable and constant peptides were seen. Constant peptides were most apparent when comparing receptors from the same mouse strain. Peptide fingerprints of receptors from two independent T cell hybridomas with the same idiotype and specificity were identical. We also describe a molecule detected on the surface of a human T cell leukemia whose properties were identical to those reported for the MHC receptor on normal human T cells. The molecule was a dimer of 85,000-90,000 MW containing a 46,000 MW acidic alpha-chain and an unrelated 40,000 MW neutral beta-chain.


Journal of Clinical Investigation | 2010

Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis

Anil K. Sood; Guillermo N. Armaiz-Pena; Jyotsnabaran Halder; Alpa M. Nick; Rebecca L. Stone; Wei Hu; Amy R. Carroll; Whitney A. Spannuth; Michael T. Deavers; Julie K. Allen; Liz Y. Han; Aparna A. Kamat; Mian M.K. Shahzad; Bradley W. McIntyre; Claudia M. Diaz-Montero; Nicholas B. Jennings; Yvonne G. Lin; William M. Merritt; Koen DeGeest; Pablo Vivas-Mejia; Gabriel Lopez-Berestein; Michael D. Schaller; Steven W. Cole; Susan K. Lutgendorf

Chronic stress is associated with hormonal changes that are known to affect multiple systems, including the immune and endocrine systems, but the effects of stress on cancer growth and progression are not fully understood. Here, we demonstrate that human ovarian cancer cells exposed to either norepinephrine or epinephrine exhibit lower levels of anoikis, the process by which cells enter apoptosis when separated from ECM and neighboring cells. In an orthotopic mouse model of human ovarian cancer, restraint stress and the associated increases in norepinephrine and epinephrine protected the tumor cells from anoikis and promoted their growth by activating focal adhesion kinase (FAK). These effects involved phosphorylation of FAKY397, which was itself associated with actin-dependent Src interaction with membrane-associated FAK. Importantly, in human ovarian cancer patients, behavioral states related to greater adrenergic activity were associated with higher levels of pFAKY397, which was in turn linked to substantially accelerated mortality. These data suggest that FAK modulation by stress hormones, especially norepinephrine and epinephrine, can contribute to tumor progression in patients with ovarian cancer and may point to potential new therapeutic targets for cancer management.


Journal of Clinical Investigation | 2002

The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses

Lawrence Y. Lee; Yuko J. Miyamoto; Bradley W. McIntyre; Magnus Höök; Kirk W. McCrea; Damien McDevitt; Eric L. Brown

Staphylococcus aureus (SA) is an opportunistic pathogen that affects a variety of organ systems and is responsible for many diseases worldwide. SA express an MHC class II analog protein (Map), which may potentiate SA survival by modulating host immunity. We tested this hypothesis in mice by generating Map-deficient SA (Map(-)SA) and comparing disease outcome to wild-type Map(+)SA-infected mice. Map(-)SA-infected mice presented with significantly reduced levels of arthritis, osteomyelitis, and abscess formation compared with control animals. Furthermore, Map(-)SA-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map(+)SA-infected controls, suggesting that T cells can affect disease outcome following SA infection and Map may attenuate cellular immunity against SA. The capacity of Map to alter T cell function was tested more specifically in vitro and in vivo using native and recombinant forms of Map. T cells or mice treated with recombinant Map had reduced T cell proliferative responses and a significantly reduced delayed-type hypersensitivity response to challenge antigen, respectively. These data suggest a role for Map as an immunomodulatory protein that may play a role in persistent SA infections by affecting protective cellular immunity.


Blood | 2011

An anti–PR1/HLA-A2 T-cell receptor–like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells

Anna Sergeeva; Gheath Alatrash; Hong He; Kathryn Ruisaard; Sijie Lu; James N. Wygant; Bradley W. McIntyre; Qing Ma; Dan Li; Lisa S. St. John; Karen Clise-Dwyer; Jeffrey J. Molldrem

PR1 (VLQELNVTV) is a human leukocyte antigen-A2 (HLA-A2)-restricted leukemia-associated peptide from proteinase 3 (P3) and neutrophil elastase (NE) that is recognized by PR1-specific cytotoxic T lymphocytes that contribute to cytogenetic remission of acute myeloid leukemia (AML). We report a novel T-cell receptor (TCR)-like immunoglobulin G2a (IgG2a) antibody (8F4) with high specific binding affinity (dissociation constant [K(D)] = 9.9nM) for a combined epitope of the PR1/HLA-A2 complex. Flow cytometry and confocal microscopy of 8F4-labeled cells showed significantly higher PR1/HLA-A2 expression on AML blasts compared with normal leukocytes (P = .046). 8F4 mediated complement-dependent cytolysis of AML blasts and Lin(-)CD34(+)CD38(-) leukemia stem cells (LSCs) but not normal leukocytes (P < .005). Although PR1 expression was similar on LSCs and hematopoietic stem cells, 8F4 inhibited AML progenitor cell growth, but not normal colony-forming units from healthy donors (P < .05). This study shows that 8F4, a novel TCR-like antibody, binds to a conformational epitope of the PR1/HLA-A2 complex on the cell surface and mediates specific lysis of AML, including LSCs. Therefore, this antibody warrants further study as a novel approach to targeting leukemia-initiating cells in patients with AML.


In Vitro Cellular & Developmental Biology – Animal | 1997

Changes in gravity inhibit lymphocyte locomotion through type I collagen

Neal R. Pellis; Thomas J. Goodwin; Diana Risin; Bradley W. McIntyre; Roland P. Pizzini; David Cooper; Tacey L. Baker; Glenn F. Spaulding

SummaryImmunity relies on the circulation of lymphocytes through many different tissues including blood vessels, lymphatic channels, and lymphoid organs. The ability of lymphocytes to traverse the interstitium in both nonlymphoid and lymphoid tissues can be determined in vitro by assaying their capacity to locomote through Type I collagen. In an attempt to characterize potential causes of microgravity-induced immunosuppression, we investigated the effects of simulated microgravity on human lymphocyte function in vitro using a specialized rotating-wall vessel culture system developed at the Johnson Space Center. This very low shear culture system randomizes gravitational vectors and provides an in vitro approximation of microgravity. In the randomized gravity of the rotating-wall vessel culture system, peripheral blood lymphocytes did not locomote through Type I collagen, whereas static cultures supported normal movement. Although cells remained viable during the entire culture period, peripheral blood lymphocytes transferred to unit gravity (static culture) after 6 h in the rotating-wall vessel culture system were slow to recover and locomote into collagen matrix. After 72 h in the rotating-wall vessel culture system and an additional 72 h in static culture, peripheral blood lymphocytes did not recover their ability to locomote. Loss of locomotory activity in rotating-wall vessel cultures appears to be related to changes in the activation state of the lymphocytes and the expression of adhesion molecules. Culture in the rotating-wall vessel system blunted the ability of peripheral blood lymphocytes to respond to polyclonal activation with phytohemagglutinin. Locomotory response remained intact when peripheral blood lymphocytes were activated by anti-CD3 antibody and interleukin-2 prior to introduction into the rotating-wall vessel culture system. Thus, in addition to the systemic stress factors that may affect immunity, isolated lymphocytes respond to gravitational changes by ceasing locomotion through model interstitium. These in vitro investigations suggest that microgravity induces non-stress-related changes in cell function that may be critical to immunity. Preliminary analysis of locomotion in true microgravity revealed a substantial inhibition of cellular movement in Type I collagen. Thus, the rotating-wall vessel culture system provides a model for analyzing the microgravity-induced inhibition of lymphocyte locomotion and the investigation of the mechanisms related to lymphocyte movement.


Cancer Immunology, Immunotherapy | 1998

Multidimensional flow-cytometric analysis of dendritic cells in peripheral blood of normal donors and cancer patients

Cherylyn A. Savary; Monica Grazziutti; Bohuslav Melichar; Donna Przepiorka; Ralph S. Freedman; Richard E. Cowart; D.M. Cohen; Elias Anaissie; Darren G. Woodside; Bradley W. McIntyre; Duane L. Pierson; Neal R. Pellis; John H. Rex

Abstract We studied the potential of multidimensional flow cytometry to evaluate the frequency and maturation/activation status of dendritic cells in minimally manipulated peripheral blood mononuclear cell preparations (i.e., only separated on Ficoll-Hypaque) of normal donors and cancer patients. A rare subset of HLA-DR+ leukocytes (less than 1% mononuclear cells) was detected in blood of normal donors that displayed all the features of dendritic cells: these cells had high forward-light-scatter characteristics and coexpressed CD4, CD86 and CD54 surface antigens, but lacked the lineage-associated surface markers of T cells, B cells, monocytes, granulocytes or NK i.e. they were CD3–, CD19–, CD20–, CD14–, CD11b–, CD16–, CD56–). These physical and phenotypic properties were virtually identical to those of immunomagnetically sorted leukocytes characterized as dendritic-cells on the basis of morphology, phenotype and high stimulatory activity in allogeneic mixed-lymphocyte cultures. Using this flow-cytometric approach we observed that the frequency of dendritic cell-like cells in peripheral blood mononuclear cell specimens of cancer patients receiving chemotherapy alone or those recovering from stem cell transplantation was significantly lower than that of normal individuals (mean ± SE: 0.36 ± 0.05%, 0.14 ± 0.06%, and 0.75 ± 0.04% respectively). Multidimensional flow-cytometric analysis of dendritic cells might represent an important new tool for assessing immunocompetence, and for monitoring the effects of therapeutic regimens on the immune system.


European Journal of Oral Sciences | 2008

Distribution of SIBLING proteins in the organic and inorganic phases of rat dentin and bone

Bingzhen Huang; Yao Sun; Izabela Maciejewska; Disheng Qin; Tao Peng; Bradley W. McIntyre; James N. Wygant; William T. Butler; Chunlin Qin

The SIBLING protein family is a group of non-collagenous proteins (NCPs) that includes dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN). In the present study, we compared these four proteins in different phases of rat dentin and bone. First, we extracted NCPs in the unmineralized matrices and cellular compartments using guanidium-HCl (G1). Second, we extracted NCPs closely associated with hydroxyapatite using an EDTA solution (E). Last, we extracted the remaining NCPs again with guanidium-HCl (G2). Each fraction of Q-Sepharose ion-exchange chromatography was analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Stains-All stain, and with western immunoblotting. In dentin, the NH(2)-terminal fragment of DSPP and its proteoglycan form were primarily present in the G1 extract, whereas the COOH-terminal fragment of DSPP was present exclusively in the E extract. The processed NH(2)-terminal fragment of DMP1 was present in G1 and E extracts, whereas the COOH-terminal fragment of DMP1 existed mainly in the E extract. Bone sialoprotein was present in all three extracts of dentin and bone, whereas OPN was present only in the G1 and E extracts of bone. The difference in the distribution of the SIBLING proteins between organic and inorganic phases supports the belief that these molecular species play different roles in dentinogenesis and osteogenesis.


Journal of Biological Chemistry | 2006

A Chondroitin Sulfate Chain Attached to the Bone Dentin Matrix Protein 1 NH2-Terminal Fragment

Chunlin Qin; Bingzhen Huang; James N. Wygant; Bradley W. McIntyre; Charles H. McDonald; Richard G. Cook; William T. Butler

Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein shown by gene ablations to be critical for the proper mineralization of bone and dentin. In the extracellular matrix of these tissues DMP1 is present as fragments representing the NH2-terminal (37 kDa) and COOH-terminal (57 kDa) portions of the cDNA-deduced amino acid sequence. During our separation of bone noncollagenous proteins, we observed a high molecular weight, DMP1-related component (designated DMP1-PG). We purified DMP1-PG with a monoclonal anti-DMP1 antibody affinity column. Amino acid analysis and Edman degradation of tryptic peptides proved that the core protein for DMP1-PG is the 37-kDa fragment of DMP1. Chondroitinase treatments demonstrated that the slower migration rate of DMP1-PG is due to the presence of glycosaminoglycan. Quantitative disaccharide analysis indicated that the glycosaminoglycan is made predominantly of chondroitin 4-sulfate. Further analysis on tryptic peptides led us to conclude that a single glycosaminoglycan chain is linked to the core protein via Ser74, located in the Ser74-Gly75 dipeptide, an amino acid sequence specific for the attachment of glycosaminoglycans. Our findings show that in addition to its existence as a phosphoprotein, the NH2-terminal fragment from DMP1 occurs as a proteoglycan. Amino acid sequence alignment analysis showed that the Ser74-Gly75 dipeptide and its flanking regions are highly conserved among a wide range of species from caiman to the Homo sapiens, indicating that this glycosaminoglycan attachment domain has survived an extremely long period of evolution pressure, suggesting that the glycosaminoglycan may be critical for the basic biological functions of DMP1.


PLOS ONE | 2013

The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells.

Stefania Fiorcari; Wells S. Brown; Bradley W. McIntyre; Zeev Estrov; Rossana Maffei; Susan O'Brien; Mariela Sivina; Julia Hoellenriegel; William G. Wierda; Michael J. Keating; Wei Ding; Neil E. Kay; Brian J. Lannutti; Roberto Marasca; Jan A. Burger

CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3Kδ) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNFα-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood.

Collaboration


Dive into the Bradley W. McIntyre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James N. Wygant

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John L. Bednarczyk

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

James P. Allison

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Wells S. Brown

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yuko J. Miyamoto

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew J. Billard

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge