Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brady Bernard is active.

Publication


Featured researches published by Brady Bernard.


Cell | 2013

The somatic genomic landscape of glioblastoma.

Cameron Brennan; Roel G.W. Verhaak; Aaron McKenna; Benito Campos; Houtan Noushmehr; Sofie R. Salama; Siyuan Zheng; Debyani Chakravarty; J. Zachary Sanborn; Samuel H. Berman; Rameen Beroukhim; Brady Bernard; Chang-Jiun Wu; Giannicola Genovese; Ilya Shmulevich; Jill S. Barnholtz-Sloan; Lihua Zou; Rahulsimham Vegesna; Sachet A. Shukla; Giovanni Ciriello; W.K. Yung; Wei Zhang; Carrie Sougnez; Tom Mikkelsen; Kenneth D. Aldape; Darell D. Bigner; Erwin G. Van Meir; Michael D. Prados; Andrew E. Sloan; Keith L. Black

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Cell Reports | 2014

CTCF Haploinsufficiency Destabilizes DNA Methylation and Predisposes to Cancer

Christopher J. Kemp; James M. Moore; Russell Moser; Brady Bernard; Matt Teater; Leslie E. Smith; Natalia A. Rabaia; Kay E. Gurley; Justin Guinney; Stephanie E. Busch; Rita Shaknovich; Victor Lobanenkov; Denny Liggitt; Ilya Shmulevich; Ari Melnick; Galina N. Filippova

Epigenetic alterations, particularly in DNA methylation, are ubiquitous in cancer, yet the molecular origins and the consequences of these alterations are poorly understood. CTCF, a DNA-binding protein that regulates higher-order chromatin organization, is frequently altered by hemizygous deletion or mutation in human cancer. To date, a causal role for CTCF in cancer has not been established. Here, we show that Ctcf hemizygous knockout mice are markedly susceptible to spontaneous, radiation-, and chemically induced cancer in a broad range of tissues. Ctcf(+/-) tumors are characterized by increased aggressiveness, including invasion, metastatic dissemination, and mixed epithelial/mesenchymal differentiation. Molecular analysis of Ctcf(+/-) tumors indicates that Ctcf is haploinsufficient for tumor suppression. Tissues with hemizygous loss of CTCF exhibit increased variability in CpG methylation genome wide. These findings establish CTCF as a prominent tumor-suppressor gene and point to CTCF-mediated epigenetic stability as a major barrier to neoplastic progression.


Cold Spring Harbor Perspectives in Medicine | 2014

Synthetic Lethal Screens as a Means to Understand and Treat MYC-Driven Cancers

Silvia Cermelli; In Sock Jang; Brady Bernard; Carla Grandori

Although therapeutics against MYC could potentially be used against a wide range of human cancers, MYC-targeted therapies have proven difficult to develop. The convergence of breakthroughs in human genomics and in gene silencing using RNA interference (RNAi) have recently allowed functional interrogation of the genome and systematic identification of synthetic lethal interactions with hyperactive MYC. Here, we focus on the pathways that have emerged through RNAi screens and present evidence that a subset of genes showing synthetic lethality with MYC are significantly interconnected and linked to chromatin and transcriptional processes, as well as to DNA repair and cell cycle checkpoints. Other synthetic lethal interactions with MYC point to novel pathways and potentially broaden the repertoire of targeted therapies. The elucidation of MYC synthetic lethal interactions is still in its infancy, and how these interactions may be influenced by tissue-specific programs and by concurrent genetic change will require further investigation. Nevertheless, we predict that these studies may lead the way to novel therapeutic approaches and new insights into the role of MYC in cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression

Kristen M. Turner; Youting Sun; Ping Ji; Kirsi J. Granberg; Brady Bernard; Limei Hu; David Cogdell; Xinhui Zhou; Olli Yli-Harja; Matti Nykter; Ilya Shmulevich; W. K. Alfred Yung; Gregory N. Fuller; Wei Zhang

Significance Glioblastoma is the most common and aggressive type of glioma, with a median survival of 15 mo. A major obstacle to effective treatment is de novo or acquired resistance to standard-care therapies, including radiation and temozolomide. Enhanced DNA repair can allow damaged or mutated cells to survive, contributing to resistance and tumor recurrence. We have identified Akt3 as the dominant Akt isoform that robustly stimulates glioma progression. We also discovered key roles for Akt3 in activating DNA repair pathways, which led to enhanced survival of human glioblastoma cells following radiation or temozolomide treatment. Our work has potential broad application to multiple cancer types in which Akt3 is expressed. Blocking this pathway may help prevent or alleviate DNA repair-mediated therapeutic resistance. Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.


Cell systems | 2016

Causal Mechanistic Regulatory Network for Glioblastoma Deciphered Using Systems Genetics Network Analysis

Christopher L. Plaisier; Sofie O’Brien; Brady Bernard; Sheila Reynolds; Zac Simon; Chad M. Toledo; Yu Ding; David Reiss; Patrick J. Paddison; Nitin S. Baliga

We developed the transcription factor (TF)-target gene database and the Systems Genetics Network Analysis (SYGNAL) pipeline to decipher transcriptional regulatory networks from multi-omic and clinical patient data, and we applied these tools to 422 patients with glioblastoma multiforme (GBM). The resulting gbmSYGNAL network predicted 112 somatically mutated genes or pathways that act through 74 TFs and 37 microRNAs (miRNAs) (67 not previously associated with GBM) to dysregulate 237 distinct co-regulated gene modules associated with patient survival or oncogenic processes. The regulatory predictions were associated to cancer phenotypes using CRISPR-Cas9 and small RNA perturbation studies and also demonstrated GBM specificity. Two pairwise combinations (ETV6-NFKB1 and romidepsin-miR-486-3p) predicted by the gbmSYGNAL network had synergistic anti-proliferative effects. Finally, the network revealed that mutations in NF1 and PIK3CA modulate IRF1-mediated regulation of MHC class I antigen processing and presentation genes to increase tumor lymphocyte infiltration and worsen prognosis. Importantly, SYGNAL is widely applicable for integrating genomic and transcriptomic measurements from other human cohorts.


Bioinformatics | 2016

Combining dependent P-values with an empirical adaptation of Brown’s method

William Poole; David L. Gibbs; Ilya Shmulevich; Brady Bernard; Theo Knijnenburg

MOTIVATION Combining P-values from multiple statistical tests is a common exercise in bioinformatics. However, this procedure is non-trivial for dependent P-values. Here, we discuss an empirical adaptation of Browns method (an extension of Fishers method) for combining dependent P-values which is appropriate for the large and correlated datasets found in high-throughput biology. RESULTS We show that the Empirical Browns method (EBM) outperforms Fishers method as well as alternative approaches for combining dependent P-values using both noisy simulated data and gene expression data from The Cancer Genome Atlas. AVAILABILITY AND IMPLEMENTATION The Empirical Browns method is available in Python, R, and MATLAB and can be obtained from https://github.com/IlyaLab/CombiningDependentPvalues UsingEBM The R code is also available as a Bioconductor package from https://www.bioconductor.org/packages/devel/bioc/html/EmpiricalBrownsMethod.html CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


PLOS ONE | 2012

Increasing Coverage of Transcription Factor Position Weight Matrices through Domain-level Homology

Brady Bernard; Vesteinn Thorsson; Hector Rovira; Ilya Shmulevich

Transcription factor-DNA interactions, central to cellular regulation and control, are commonly described by position weight matrices (PWMs). These matrices are frequently used to predict transcription factor binding sites in regulatory regions of DNA to complement and guide further experimental investigation. The DNA sequence preferences of transcription factors, encoded in PWMs, are dictated primarily by select residues within the DNA binding domain(s) that interact directly with DNA. Therefore, the DNA binding properties of homologous transcription factors with identical DNA binding domains may be characterized by PWMs derived from different species. Accordingly, we have implemented a fully automated domain-level homology searching method for identical DNA binding sequences. By applying the domain-level homology search to transcription factors with existing PWMs in the JASPAR and TRANSFAC databases, we were able to significantly increase coverage in terms of the total number of PWMs associated with a given species, assign PWMs to transcription factors that did not previously have any associations, and increase the number of represented species with PWMs over an order of magnitude. Additionally, using protein binding microarray (PBM) data, we have validated the domain-level method by demonstrating that transcription factor pairs with matching DNA binding domains exhibit comparable DNA binding specificity predictions to transcription factor pairs with completely identical sequences. The increased coverage achieved herein demonstrates the potential for more thorough species-associated investigation of protein-DNA interactions using existing resources. The PWM scanning results highlight the challenging nature of transcription factors that contain multiple DNA binding domains, as well as the impact of motif discovery on the ability to predict DNA binding properties. The method is additionally suitable for identifying domain-level homology mappings to enable utilization of additional information sources in the study of transcription factors. The domain-level homology search method, resulting PWM mappings, web-based user interface, and web API are publicly available at http://dodoma.systemsbiology.netdodoma.systemsbiology.net.


PLOS Computational Biology | 2017

Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

William Poole; Kalle Leinonen; Ilya Shmulevich; Theo Knijnenburg; Brady Bernard

Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.


Nucleic Acids Research | 2014

Structure-based predictions broadly link transcription factor mutations to gene expression changes in cancers

Justin Ashworth; Brady Bernard; Sheila Reynolds; Christopher L. Plaisier; Ilya Shmulevich; Nitin S. Baliga

Thousands of unique mutations in transcription factors (TFs) arise in cancers, and the functional and biological roles of relatively few of these have been characterized. Here, we used structure-based methods developed specifically for DNA-binding proteins to systematically predict the consequences of mutations in several TFs that are frequently mutated in cancers. The explicit consideration of protein–DNA interactions was crucial to explain the roles and prevalence of mutations in TP53 and RUNX1 in cancers, and resulted in a higher specificity of detection for known p53-regulated genes among genetic associations between TP53 genotypes and genome-wide expression in The Cancer Genome Atlas, compared to existing methods of mutation assessment. Biophysical predictions also indicated that the relative prevalence of TP53 missense mutations in cancer is proportional to their thermodynamic impacts on protein stability and DNA binding, which is consistent with the selection for the loss of p53 transcriptional function in cancers. Structure and thermodynamics-based predictions of the impacts of missense mutations that focus on specific molecular functions may be increasingly useful for the precise and large-scale inference of aberrant molecular phenotypes in cancer and other complex diseases.


PLOS ONE | 2015

CloudForest: A Scalable and Efficient Random Forest Implementation for Biological Data.

Ryan Bressler; Richard Kreisberg; Brady Bernard; John E. Niederhuber; Joseph G. Vockley; Ilya Shmulevich; Theo Knijnenburg

Random Forest has become a standard data analysis tool in computational biology. However, extensions to existing implementations are often necessary to handle the complexity of biological datasets and their associated research questions. The growing size of these datasets requires high performance implementations. We describe CloudForest, a Random Forest package written in Go, which is particularly well suited for large, heterogeneous, genetic and biomedical datasets. CloudForest includes several extensions, such as dealing with unbalanced classes and missing values. Its flexible design enables users to easily implement additional extensions. CloudForest achieves fast running times by effective use of the CPU cache, optimizing for different classes of features and efficiently multi-threading. https://github.com/ilyalab/CloudForest.

Collaboration


Dive into the Brady Bernard's collaboration.

Top Co-Authors

Avatar

Ilya Shmulevich

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Carla Grandori

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Sheila Reynolds

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Theo Knijnenburg

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Kemp

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Silvia Cermelli

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olli Yli-Harja

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Aaron McKenna

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Sloan

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge