Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Braeden L. Butler is active.

Publication


Featured researches published by Braeden L. Butler.


ACS Chemical Biology | 2012

Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate

Mary P. Hall; James Unch; Brock F. Binkowski; Michael P. Valley; Braeden L. Butler; Monika G. Wood; Paul Otto; Kristopher Zimmerman; Gediminas Vidugiris; Thomas Machleidt; Matthew B. Robers; Hélène A Benink; Christopher T. Eggers; Michael R. Slater; Poncho Meisenheimer; Dieter Klaubert; Frank Fan; Lance P. Encell; Keith V. Wood

Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp Oplophorus gracilirostris, we have improved luminescence expression in mammalian cells ∼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ∼150-fold greater than that of either firefly (Photinus pyralis) or Renilla luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes.


ACS Chemical Biology | 2008

Novel genetically encoded biosensors using firefly luciferase.

Frank Fan; Brock F. Binkowski; Braeden L. Butler; Peter F. Stecha; Martin K. Lewis; Keith V. Wood

Genetically encoded biosensors have proven valuable for real-time monitoring of intracellular phenomena, particularly FRET-based sensors incorporating variants of green fluorescent protein. To increase detection sensitivity and response dynamics, we genetically engineered firefly luciferase to detect specific intermolecular interactions through modulation of its luminescence activity. This concept has been applied in covalent, noncovalent, and allosteric design configurations. The covalent design gives sensitive detection of protease activity through a cleavage-dependent increase in luminescence. The noncovalent and allosteric designs allow reversible detection of the small molecules rapamycin and cAMP, respectively. These sensors allow detection of molecular processes within living cells following addition of the luciferin substrate to the growth medium. For example, the cAMP sensor allows monitoring of intracellular signal transduction associated with G-protein coupled receptor function. These and other luminescent biosensors will be useful for the sensitive detection of cellular physiology in research and drug discovery.


Analytical Biochemistry | 2010

Red-emitting luciferases for bioluminescence reporter and imaging applications

Bruce R. Branchini; Danielle M. Ablamsky; Audrey L. Davis; Tara L. Southworth; Braeden L. Butler; Frank Fan; Amit P. Jathoul; Martin Pule

North American firefly Photinus pyralis luciferase, which emits yellow-green light (557nm), has been adapted for a variety of applications, including gene reporter assays, whole-cell biosensor measurements, and in vivo imaging. Luciferase variants with red-shifted bioluminescence and high specific activity can be paired with green-emitting counterparts for use in dual-color reporter assays or can be used alone for in vivo imaging. Beginning with a previously reported red-emitting thermostable mutant and using mutagenesis techniques, we engineered two luciferases with redder emission maxima while maintaining satisfactory specific activities and thermostability. The novel enzymes were expressed in HEK293 cells, where they performed similarly to Promegas codon-optimized click beetle red luciferase in model reporter assays. When the firefly luciferase variants were codon-optimized and retested using optimized substrate concentrations, they provided 50- to 100-fold greater integrated light intensities than the click beetle enzyme. These results suggest that the novel enzymes should provide superior performance in dual-color reporter and in vivo imaging applications, and they illustrate the importance of codon optimization for assays in mammalian cells.


ACS Chemical Biology | 2016

NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells.

Andrew S. Dixon; Marie K. Schwinn; Mary P. Hall; Kris Zimmerman; Paul Otto; Thomas Lubben; Braeden L. Butler; Brock F. Binkowski; Thomas Machleidt; Thomas A. Kirkland; Monika G. Wood; Christopher T. Eggers; Lance P. Encell; Keith V. Wood

Protein-fragment complementation assays (PCAs) are widely used for investigating protein interactions. However, the fragments used are structurally compromised and have not been optimized nor thoroughly characterized for accurately assessing these interactions. We took advantage of the small size and bright luminescence of NanoLuc to engineer a new complementation reporter (NanoBiT). By design, the NanoBiT subunits (i.e., 1.3 kDa peptide, 18 kDa polypeptide) weakly associate so that their assembly into a luminescent complex is dictated by the interaction characteristics of the target proteins onto which they are appended. To ascertain their general suitability for measuring interaction affinities and kinetics, we determined that their intrinsic affinity (KD = 190 μM) and association constants (kon = 500 M(-1) s(-1), koff = 0.2 s(-1)) are outside of the ranges typical for protein interactions. The accuracy of NanoBiT was verified under defined biochemical conditions using the previously characterized interaction between SME-1 β-lactamase and a set of inhibitor binding proteins. In cells, NanoBiT fusions to FRB/FKBP produced luminescence consistent with the linear characteristics of NanoLuc. Response dynamics, evaluated using both protein kinase A and β-arrestin-2, were rapid, reversible, and robust to temperature (21-37 °C). Finally, NanoBiT provided a means to measure pharmacology of kinase inhibitors known to induce the interaction between BRAF and CRAF. Our results demonstrate that the intrinsic properties of NanoBiT allow accurate representation of protein interactions and that the reporter responds reliably and dynamically in cells.


ACS Chemical Biology | 2011

A luminescent biosensor with increased dynamic range for intracellular cAMP.

Brock F. Binkowski; Braeden L. Butler; Peter F. Stecha; Christopher T. Eggers; Paul Otto; Kris Zimmerman; Gediminas Vidugiris; Monika G. Wood; Lance P. Encell; Frank Fan; Keith V. Wood

The second messenger cAMP is a key mediator of signal transduction following activation of G-protein coupled receptors. Investigations on Gs-coupled receptors would benefit from a second messenger assay that allows continuous monitoring of kinetic changes in cAMP concentration over a broad dynamic range. To accomplish this, we have evolved a luminescent biosensor for cAMP to better encompass the physiological concentration ranges present in living cells. When compared to an immunoassay, the evolved biosensor construct was able to accurately track both the magnitude and kinetics of cAMP change using a far less labor intensive format. We demonstrate the utility of this construct to detect a broad range of receptor activity, together with showing suitability for use in high-throughput screening.


PLOS ONE | 2013

Imaging proteolytic activity in live cells and animal models.

Stefanie Galbán; Yong Hyun Jeon; Brittany M. Bowman; James G. Stevenson; Katrina A. Sebolt; Lisa M. Sharkey; Michael Lafferty; Benjamin A. Hoff; Braeden L. Butler; Susan Wigdal; Brock F. Binkowski; Paul Otto; Kris Zimmerman; Gediminas Vidugiris; Lance P. Encell; Frank Fan; Keith V. Wood; Craig J. Galbán; Brian D. Ross; Alnawaz Rehemtulla

In addition to their degradative role in protein turnover, proteases play a key role as positive or negative regulators of signal transduction pathways and therefore their dysregulation contributes to many disease states. Regulatory roles of proteases include their hormone-like role in triggering G protein-coupled signaling (Protease-Activated-Receptors); their role in shedding of ligands such as EGF, Notch and Fas; and their role in signaling events that lead to apoptotic cell death. Dysregulated activation of apoptosis by the caspase family of proteases has been linked to diseases such as cancer, autoimmunity and inflammation. In an effort to better understand the role of proteases in health and disease, a luciferase biosensor is described which can quantitatively report proteolytic activity in live cells and mouse models. The biosensor, hereafter referred to as GloSensor Caspase 3/7 has a robust signal to noise (50–100 fold) and dynamic range such that it can be used to screen for pharmacologically active compounds in high throughput campaigns as well as to study cell signaling in rare cell populations such as isolated cancer stem cells. The biosensor can also be used in the context of genetically engineered mouse models of human disease wherein conditional expression using the Cre/loxP technology can be implemented to investigate the role of a specific protease in living subjects. While the regulation of apoptosis by caspases was used as an example in these studies, biosensors to study additional proteases involved in the regulation of normal and pathological cellular processes can be designed using the concepts presented herein.


Journal of Immunology | 2014

Real-Time Detection of CTL Function Reveals Distinct Patterns of Caspase Activation Mediated by Fas versus Granzyme B

Jinzhu Li; Sarah K. Figueira; Alexandra C. Vrazo; Brock F. Binkowski; Braeden L. Butler; Yasuhiro Tabata; Alexandra H. Filipovich; Michael B. Jordan; Kimberly Risma

Activation of caspase-mediated apoptosis is reported to be a hallmark of both granzyme B– and Fas-mediated pathways of killing by CTLs; however, the kinetics of caspase activation remain undefined owing to an inability to monitor target cell–specific apoptosis in real time. We have overcome this limitation by developing a novel biosensor assay that detects continuous, protease-specific activity in target cells. Biosensors were engineered from a circularly permuted luciferase, linked internally by either caspase 3/7 or granzyme B/caspase 8 cleavage sites, thus allowing activation upon proteolytic cleavage by the respective proteases. Coincubation of murine CTLs with target cells expressing either type of biosensor led to a robust luminescent signal within minutes of cell contact. The signal was modulated by the strength of TCR signaling, the ratio of CTL/target cells, and the type of biosensor used. Additionally, the luciferase signal at 30 min correlated with target cell death, as measured by a 51Cr-release assay. The rate of caspase 3/7 biosensor activation was unexpectedly rapid following granzyme B– compared with Fas-mediated signal induction in murine CTLs; the latter appeared gradually after a 90-min delay in perforin- or granzyme B–deficient CTLs. Remarkably, the Fas-dependent, caspase 3/7 biosensor signal induced by perforin-deficient human CTLs was also detectable after a 90-min delay when measured by redirected killing. Thus, we have used a novel, real-time assay to demonstrate the distinct pattern of caspase activation induced by granzyme B versus Fas in human and murine CTLs.


Advances in nucleic acid and protein analyses, manipulation, and sequencing. Conference | 2000

Use of MagneSil(TM) paramagnetic particles for plasmid purification, PCR cleanup, and purification of dideoxy and big dye DNA sequencing reactions

Rex M. Bitner; Doug White; Steven K. Krueger; Michael P. Bjerke; Braeden L. Butler; Craig Smith

Traditional anion exchange purification of nucleic acids requires the elution of the DNA or RNA in a salt solution, necessitating the precipitation or desalting of the nucleic acid prior to many molecular biology applications. A pH dependent anion exchange purification method is described which allows the purification of nucleic acids at one pH, followed by the elution of the nucleic acid in a low salt buffer at a second, higher pH. The benefits of this method include the avoidance of alcohol washes and the drying steps required for alcohol removal, as well as the benefits of anion exchange purification without the need for desalting of the purified DNA or RNA.


Blood | 2015

Live cell evaluation of granzyme delivery and death receptor signaling in tumor cells targeted by human natural killer cells

Alexandra C. Vrazo; Adrianne Hontz; Sarah K. Figueira; Braeden L. Butler; Julie M. Ferrell; Brock F. Binkowski; Jinzhu Li; Kimberly Risma

Growing interest in natural killer (NK) cell-based therapy for treating human cancer has made it imperative to develop new tools to measure early events in cell death. We recently demonstrated that protease-cleavable luciferase biosensors detect granzyme B and pro-apoptotic caspase activation within minutes of target cell recognition by murine cytotoxic lymphocytes. Here we report successful adaptation of the biosensor technology to assess perforin-dependent and -independent induction of death pathways in tumor cells recognized by human NK cell lines and primary cells. Cell-cell signaling via both Fc receptors and NK-activating receptors led to measurable luciferase signal within 15 minutes. In addition to the previously described aspartase-cleavable biosensors, we report development of granzyme A and granzyme K biosensors, for which no other functional reporters are available. The strength of signaling for granzyme biosensors was dependent on perforin expression in IL-2-activated NK effectors. Perforin-independent induction of apoptotic caspases was mediated by death receptor ligation and was detectable after 45 minutes of conjugation. Evidence of both FasL and TRAIL-mediated signaling was seen after engagement of Jurkat cells by perforin-deficient human cytotoxic lymphocytes. Although K562 cells have been reported to be insensitive to TRAIL, robust activation of pro-apoptotic caspases by NK cell-derived TRAIL was detectable in K562 cells. These studies highlight the sensitivity of protease-cleaved luciferase biosensors to measure previously undetectable events in live cells in real time. Further development of caspase and granzyme biosensors will allow interrogation of additional features of granzyme activity in live cells including localization, timing, and specificity.


Cancer Research | 2017

Abstract 3312: A novel plate-based assay for screening autophagic activity in 2D and 3D cell culture models

Dan Lazar; Amani A. Gillette; Braeden L. Butler; Christopher T. Eggers; Brock F. Binkowski; Gediminas Vidugiris; Michael R. Slater; Dongping Ma; James J. Cali

The critical importance of autophagy in cell health and its proposed role in disease-relevant biology, including cancer, inflammation, and immunology, has increased the need for more effective assays to screen for agents that modulate autophagic activity. Here we utilize NanoLuc Binary Technology (NanoBiT) to develop a homogeneous plate-based assay to measure autophagic flux in cell culture models. In this approach, an exogenous LC3B (Atg8) fusion protein was tagged on its N-terminus with an 11 amino acid peptide (HiBiT) and stably expressed in mammalian cells, including U2OS and HEK293. After exposure to various treatment conditions, cellular levels of this novel autophagy reporter were determined by addition of a lytic detection reagent containing Large BiT (LgBiT). LgBiT rapidly associates with HiBiT in the cell lysate, producing a bright, luminescent enzyme in the presence of the furimazine substrate. The bright signal allows low levels of expression of the reporter, maximizing the assay response, and the signal is stable, allowing assay of multiple 96- or 384-well plates in the same experiment. In response to autophagic stimuli, including nutrient deprivation and various mTORC inhibitors (e.g., PP242 and rapamycin), autophagic degradation of expressed LC3 reporter was evident by reduced assay signal. In contrast, in response to both upstream (e.g., 3-MA and wortmannin) and downstream (e.g., bafilomycin A1 and chloroquine) inhibitors of the autophagy pathway, degradation of the autophagic reporter was effectively blocked and assay signal was consistently increased as predicted. Compound effects were time dependent and stratified according to expected potency and efficacy of the test agents employed. The use of a mutant reporter based on LC3G120A further demonstrated the specificity of the wild-type LC3 reporter for the detection of autophagic activity. When assayed in 384-well plates with automation, HEK293 autophagy reporter cells produced Z’ values of ~0.7 in response to autophagy induction with PP242, while subsequent blockade of autophagy with bafilomycin A1 resulted in Z’ values of ~0.8. This data, and subsequent LOPAC library screening, indicates the potential utility of this assay method for HTS applications. In addition, the HEK293 autophagy reporter cells can be induced to form 3D cell spheroids, thus allowing investigation of assay performance in this more complex model. Autophagy reporter levels increased with increasing spheroid size (up to 650 μm diameter tested) in a manner proportional to a surrogate measure of viable cell number. Importantly, both induction and inhibition of autophagic activity was easily detected following PP242 and bafilomycin A1 treatment, respectively. Using this novel plate-based assay system for the determination of autophagic flux, it is possible to screen test agents and quantitatively determine both the potency and efficacy of autophagy modulation. Citation Format: Dan F. Lazar, Amani A. Gillette, Braeden L. Butler, Christopher T. Eggers, Brock F. Binkowski, Gediminas Vidugiris, Michael R. Slater, Dongping Ma, James J. Cali. A novel plate-based assay for screening autophagic activity in 2D and 3D cell culture models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3312. doi:10.1158/1538-7445.AM2017-3312

Collaboration


Dive into the Braeden L. Butler's collaboration.

Researchain Logo
Decentralizing Knowledge