Brahim Oujia
University of Monastir
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brahim Oujia.
Journal of Physics B | 2006
Wissem Zrafi; Brahim Oujia; Florent Xavier Gadéa
For nearly all states dissociating below the ionic limit, we perform an adiabatic and diabatic study for 1?+ and 3?+ electronic states dissociating into Cs (6s, 6p, 5d, 7s, 7p, 6d, 8s and 4f) + H (1s). Furthermore, we present the adiabatic results for the 1?5 1,3? and 1?3 1,3? states. The calculations rely on an ab initio pseudopotential, semi-empirical operator core-valence correlation and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our spectroscopic constants and vibrational level spacing are in very good agreement with the available experimental data. Diabatic potentials and dipole moments are analysed, revealing the strong imprint of the ionic state in the 1?+ adiabatic states. The H electron affinity correction was accounted for by the use of the efficient diabatization method. This leads to a better agreement with the available experimental data. Experimental suggestions are also given for the higher excited states based on their unusual behaviour.
Journal of Chemical Physics | 2002
Neji Khelifi; Brahim Oujia; Florent Xavier Gadéa
The diabatic and adiabatic potential-energy curves and permanent and transition dipole moments of the highly excited states of the CaH+ molecular ion have been computed as a function of the internuclear distance R for a large and dense grid varying from 2.5 to 240 au. The adiabatic results are determined by an ab initio approach involving a nonempirical pseudopotential for the Ca core, operatorial core–valence correlation, and full valence configuration interaction. The molecule is thus treated as a two-electron system. The diabatic potential energy curves have been calculated using an effective metric combined to the effective Hamiltonian theory. The diabatic potential-energy curves and their permanent dipole moments for the 1∑+ symmetry are examined and corroborate the high imprint of the ionic state in the adiabatic representation. Taking the benefit of the diabatization approach, correction of hydrogen electron affinity was taken into account leading to improved results for the adiabatic potentials bu...
Journal of Physical Chemistry A | 2011
Héla Habli; Riadh Dardouri; Brahim Oujia; Florent Xavier Gadéa
The diabatic and adiabatic potential-energy curves and permanent and transition dipole moments of the highly excited states of the CaH(+) molecular ion have been computed as a function of the internuclear distance R for a large and dense grid varying from 2.5 to 240 au. The adiabatic results are determined by an ab initio approach involving a nonempirical pseudopotential for the Ca core, operatorial core-valence correlation, and full valence configuration interaction. The molecule is thus treated as a two-electron system. The diabatic potential energy curves have been calculated using an effective metric combined to the effective Hamiltonian theory. The diabatic potential-energy curves and their permanent dipole moments for the (1)∑(+) symmetry are examined and corroborate the high imprint of the ionic state in the adiabatic representation. Taking the benefit of the diabatization approach, correction of hydrogen electron affinity was taken into account leading to improved results for the adiabatic potentials but also the permanent and transition electric dipole moments.
Journal of Physical Chemistry A | 2013
Leila Mejrissi; Héla Habli; Houcine Ghalla; Brahim Oujia; Florent Xavier Gadéa
An adiabatic study of 1-34 (1,3)Σ(+) electronic states of barium hydride ion (BaH(+)) is presented for all states dissociating below the ionic limit Ba(2+)H(-). The 1-20 (1,3)Π and 1-12 (1,3)Δ states have been also investigated. In our approach, the valence electrons of the Ba(2+) ion described by an effective core potential (ECP) and core polarization potential (CPP) with l-dependent cutoff functions have been used. The ionic molecule BaH(+) has been treated as a two-electron system, and the full valence configuration interaction (CI) is easily achieved. The spectroscopic constants Re, De, Te, ωe, ωexe, and Be are derived. In addition, vibrational level spacing and permanent and transition dipole moments are determined and analyzed. Unusual potential shapes are found and also accidental quasidegeneracy in the vibrational spacing progression for various excited states. The (1)Σ(+) states exhibit ionic charge transfer avoided crossings series which could lead to neutralization or even H(-) formation in collisions of H(+) with Ba.
Journal of Chemical Physics | 2014
Noureddine Issaoui; Kawther Abdessalem; Houcine Ghalla; Saud Jamil Yaghmour; F. Calvo; Brahim Oujia
The solvation of the Na(+) ion in helium clusters has been studied theoretically using optimization methods. A many-body empirical potential was developed to account for Na(+)-He and polarization interactions, and the most stable structures of Na(+)He(n) clusters were determined using the basin-hopping method. Vibrational delocalization was accounted for using zero-point energy corrections at the harmonic or anharmonic levels, the latter being evaluated from quantum Monte Carlo simulations for spinless particles. From the static perspective, many-body effects are found to play a minor role, and the structures obtained reflect homogeneous covering up to n = 10, followed by polyicosahedral packing above this size, the cluster obtained at n = 12 appearing particularly stable. The cationic impurity binds the closest helium atoms sufficiently to negate vibrational delocalization at small sizes. However, this snowball effect is obliterated earlier than shell completion, the nuclear wavefunctions of (4)He(n)Na(+) with n = 5-7, and n > 10 already exhibiting multiple inherent structures. The decrease in the snowball size due to many-body effects is consistent with recent mass spectrometry measurements.
Molecular Physics | 2016
Héla Habli; Leila Mejrissi; Houcine Ghalla; Saud Jamil Yaghmour; Brahim Oujia; Florent Xavier Gadéa
ABSTRACT A wide adiabatic study has been performed for numerous electronic states of CaLi+ molecular ion. The adiabatic potential energy curves and their spectroscopic constants (Re, De, ωe and Te) have been calculated using an ab initio approach including a nonempirical pseudo-potential for the Ca and Li cores with the core polarisation potentials operator through full configuration interaction (FCI). Thereafter, the energies of vibrational levels and their spacing for all these states have been reported. In addition, the electric dipole moment curves have been investigated for the (1-19) Σ, (1-12) Π and (1-8) Δ electric states. Moreover it lets us check the extreme transition dipole moments (TDM). These behaviours of TDM are more accustomed to estimate the radiative lifetimes for all vibrational levels in 21Σ+ and 31Σ+ states. Also, the bound-bound and the bound-free contribution have been calculated precisely and by employing a Franck–Condon (FC) approximation.
Journal of Physical Chemistry A | 2013
Kawther Abdessalem; Leila Mejrissi; Noureddine Issaoui; Brahim Oujia; Florent Xavier Gadéa
The potential energy curves, vibrational energy levels, spectroscopic constants, and dipole moment curves for the ground and excited states of BaXe and its ion Ba(+)Xe molecules are calculated with an ab initio method using pseudopotential techniques and core polarization potentials. The molecules are treated as two (BaXe) or one (Ba(+)Xe) active electrons systems taking benefit of the zero pseudopotential approach for Xe. The vibrational levels and their energy spacing have been also determined for Σ(+), Π, and Δ states. The permanent and transition dipole moment curves are investigated for the (1,3)Σ(+) states of the BaXe neutral molecule and (2)Σ(+) states of the Ba(+)Xe ion. The analysis of these numerous results shows interesting behavior in potential energy curves imprinted by the strong repulsive interactions between electron and Xe and also indicates an intense transition dipole moment for both Ba(+)Xe and BaXe.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015
Noureddine Issaoui; Houcine Ghalla; S. Muthu; Henryk T. Flakus; Brahim Oujia
In this work, the molecular structure, harmonic vibrational frequencies, UV, NBO and AIM of 3-thiophenecarboxilic acid (abbreviated as 3-TCA) monomer and dimer has been investigated. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies have been calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d,p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with VEDA program. Comparison of the observed fundamental vibrational frequencies of 3-TCA with calculated results by HF and DFT methods indicates that B3LYP is better to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title compound have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, frontier molecular orbitals (HOMO-LUMO), molecular electrostatic potential (MEP) and thermodynamic properties have been performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been also computed.
Journal of Physical Chemistry A | 2013
Noura Khemiri; Riadh Dardouri; Brahim Oujia; Florent Xavier Gadéa
In this work, adiabatic potential energy curves, spectroscopic constants, dipole moments, and vibrational levels for numerous electronic states of magnesium hydride molecular ion (MgH(+)) are computed. These properties are determined by the use of an ab initio method involving a nonempirical pseudopotential for the magnesium core (Mg), the core polarization potential (CPP), the l-dependent cutoff functions and the full valence configuration interaction (FCI). The molecular ion is thus treated as a two-electron system. Our calculations on the MgH(+) molecular ion extend previous theoretical works to numerous electronic excited states in the various symmetries. A good agreement with the available theoretical and experimental works is obtained for the spectroscopic constants, the adiabatic potential energy curves, and the dipole moments for the lowest states of MgH(+).
Molecular Physics | 2016
Soulef Jellali; Héla Habli; Leila Mejrissi; Mahmoud Mohery; Brahim Oujia; Florent Xavier Gadéa
ABSTRACT The structural and electronic properties of (SrLi)+ molecular ion have been determined by the use of ab initio approaches. Potential energy curves (PECs) with their spectroscopic constants (Re, De, ωe, Te, Be and ωeχe) have been calculated. Also, the vibrational properties and the electric dipole moments, either permanent (PDM) or transition (TDM) ones, have been investigated and analysed. Large Gaussian basis sets, the full valence configuration interaction (FCI) and the formalism of non-empirical pseudo-potential including the two approaches, effective core potential (ECP) and core polarisation potential (CPP), are analysed. Therefore, (SrLi)+ is considered as a two effective electrons system. Numerous excited states of symmetries 1,3Σ+, 1,3Π and 1,3Δ dissociating below the ionic limit Sr2+Li− have been investigated. This study shows interesting behaviours around the avoided crossing related to charge transfer involving important processes in physics and astrophysics such as dynamics, pre-dissociation and inelastic transitions.