Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bram Boeckx is active.

Publication


Featured researches published by Bram Boeckx.


Nature | 2016

Tumour hypoxia causes DNA hypermethylation by reducing TET activity

Bernard Thienpont; Jessica Steinbacher; Hui Zhao; Flora D'Anna; Anna Kuchnio; Athanasios Ploumakis; Bart Ghesquière; Laurien Van Dyck; Bram Boeckx; Luc Schoonjans; Els Hermans; Frédéric Amant; Vessela N. Kristensen; Kian Peng Koh; Massimiliano Mazzone; Mathew L. Coleman; Thomas Carell; Peter Carmeliet; Diether Lambrechts

Hypermethylation of the promoters of tumour suppressor genes represses transcription of these genes, conferring growth advantages to cancer cells. How these changes arise is poorly understood. Here we show that the activity of oxygen-dependent ten-eleven translocation (TET) enzymes is reduced by tumour hypoxia in human and mouse cells. TET enzymes catalyse DNA demethylation through 5-methylcytosine oxidation. This reduction in activity occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, hypoxia-inducible factor activity or reactive oxygen species, and depends directly on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. In patients, tumour suppressor gene promoters are markedly more methylated in hypoxic tumour tissue, independent of proliferation, stromal cell infiltration and tumour characteristics. Our data suggest that up to half of hypermethylation events are due to hypoxia, with these events conferring a selective advantage. Accordingly, increased hypoxia in mouse breast tumours increases hypermethylation, while restoration of tumour oxygenation abrogates this effect. Tumour hypoxia therefore acts as a novel regulator of DNA methylation.


Nature Medicine | 2016

p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity

Carmen Adriaens; Laura Standaert; Jasmine Barra; Mathilde Latil; Annelien Verfaillie; Peter Kalev; Bram Boeckx; Paul W G Wijnhoven; Enrico Radaelli; William Vermi; Eleonora Leucci; Gaëlle Lapouge; Benjamin Beck; Joost van den Oord; Shinichi Nakagawa; Tetsuro Hirose; Anna Sablina; Diether Lambrechts; Stein Aerts; Cédric Blanpain; Jean-Christophe Marine

In a search for mediators of the p53 tumor suppressor pathway, which induces pleiotropic and often antagonistic cellular responses, we identified the long noncoding RNA (lncRNA) NEAT1. NEAT1 is an essential architectural component of paraspeckle nuclear bodies, whose pathophysiological relevance remains unclear. Activation of p53, pharmacologically or by oncogene-induced replication stress, stimulated the formation of paraspeckles in mouse and human cells. Silencing Neat1 expression in mice, which prevents paraspeckle formation, sensitized preneoplastic cells to DNA-damage-induced cell death and impaired skin tumorigenesis. We provide mechanistic evidence that NEAT1 promotes ATR signaling in response to replication stress and is thereby engaged in a negative feedback loop that attenuates oncogene-dependent activation of p53. NEAT1 targeting in established human cancer cell lines induced synthetic lethality with genotoxic chemotherapeutics, including PARP inhibitors, and nongenotoxic activation of p53. This study establishes a key genetic link between NEAT1 paraspeckles, p53 biology and tumorigenesis and identifies NEAT1 as a promising target to enhance sensitivity of cancer cells to both chemotherapy and p53 reactivation therapy.


Cancer Cell | 2016

Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy

Anna Rita Cantelmo; Lena Christin Conradi; Aleksandra Brajic; Jermaine Goveia; Joanna Kalucka; Andreas Pircher; Pallavi Chaturvedi; Johanna Hol; Bernard Thienpont; Laure Anne Teuwen; Sandra Schoors; Bram Boeckx; Joris Vriens; Anna Kuchnio; Koen Veys; Bert Cruys; Lise Finotto; Lucas Treps; Tor Espen Stav-Noraas; Francesco Bifari; Peter Stapor; Kim R. Kampen; Katrien De Bock; Guttorm Haraldsen; Luc Schoonjans; Ton J. Rabelink; Guy Eelen; Bart Ghesquière; Jalees Rehman; Diether Lambrechts

Abnormal tumor vessels promote metastasis and impair chemotherapy. Hence, tumor vessel normalization (TVN) is emerging as an anti-cancer treatment. Here, we show that tumor endothelial cells (ECs) have a hyper-glycolytic metabolism, shunting intermediates to nucleotide synthesis. EC haplo-deficiency or blockade of the glycolytic activator PFKFB3 did not affect tumor growth, but reduced cancer cell invasion, intravasation, and metastasis by normalizing tumor vessels, which improved vessel maturation and perfusion. Mechanistically, PFKFB3 inhibition tightened the vascular barrier by reducing VE-cadherin endocytosis in ECs, and rendering pericytes more quiescent and adhesive (via upregulation of N-cadherin) through glycolysis reduction; it also lowered the expression of cancer cell adhesion molecules in ECs by decreasing NF-κB signaling. PFKFB3-blockade treatment also improved chemotherapy of primary and metastatic tumors.


Nature Medicine | 2015

Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma

Dany Nassar; Mathilde Latil; Bram Boeckx; Diether Lambrechts; Cédric Blanpain

Mouse models of cancers are routinely used to study cancer biology. However, it remains unclear whether carcinogenesis in mice is driven by the same spectrum of genomic alterations found in humans. Here we conducted a comprehensive genomic analysis of 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced skin cancer, the most commonly used skin cancer model, which appears as benign papillomas that progress into squamous cell carcinomas (SCCs). We also studied genetically induced SCCs that expressed G12D mutant Kras (Kras G12D) but were deficient for p53. Using whole-exome sequencing, we uncovered a characteristic mutational signature of DMBA-induced SCCs. We found that the vast majority of DMBA-induced SCCs presented recurrent mutations in Hras, Kras or Rras2 and mutations in several additional putative oncogenes and tumor-suppressor genes. Similar genes were recurrently mutated in mouse and human SCCs that were from different organs or had been exposed to different carcinogens. Invasive SCCs, but not papillomas, presented substantial chromosomal aberrations, especially in DMBA-induced and genetically induced Trp53-mutated SCCs. Metastasis occurred through sequential spreading, with relatively few additional genetic events. This study provides a framework for future functional cancer genomic studies in mice.


Developmental Cell | 2017

Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals

Michelle S. Levine; Bjorn Bakker; Bram Boeckx; Julia Moyett; James Lu; Benjamin Vitre; Diana C. J. Spierings; Peter M. Lansdorp; Don W. Cleveland; Diether Lambrechts; Floris Foijer; Andrew J. Holland

Centrosome amplification is a common feature of human tumors, but whether this is a cause or a consequence of cancer remains unclear. Here, we test the consequence of centrosome amplification by creating mice in which centrosome number can be chronically increased in the absence of additional genetic defects. We show that increasing centrosome number elevated tumor initiation in a mouse model of intestinal neoplasia. Most importantly, we demonstrate that supernumerary centrosomes are sufficient to drive aneuploidy and the development of spontaneous tumors in multiple tissues. Tumors arising from centrosome amplification exhibit frequent mitotic errors and possess complex karyotypes, recapitulating a common feature of human cancer. Together, our data support a direct causal relationship among centrosome amplification, genomic instability, and tumor development.


The EMBO Journal | 2016

Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis

Christian Lange; Miguel Turrero García; Ilaria Decimo; Francesco Bifari; Guy Eelen; Annelies Quaegebeur; Ruben Boon; Hui Zhao; Bram Boeckx; Junlei Chang; Christine Wu; Ferdinand le Noble; Diether Lambrechts; Mieke Dewerchin; Calvin J. Kuo; Wieland B. Huttner; Peter Carmeliet

Blood vessels are part of the stem cell niche in the developing cerebral cortex, but their in vivo role in controlling the expansion and differentiation of neural stem cells (NSCs) in development has not been studied. Here, we report that relief of hypoxia in the developing cerebral cortex by ingrowth of blood vessels temporo‐spatially coincided with NSC differentiation. Selective perturbation of brain angiogenesis in vessel‐specific Gpr124 null embryos, which prevented the relief from hypoxia, increased NSC expansion at the expense of differentiation. Conversely, exposure to increased oxygen levels rescued NSC differentiation in Gpr124 null embryos and increased it further in WT embryos, suggesting that niche blood vessels regulate NSC differentiation at least in part by providing oxygen. Consistent herewith, hypoxia‐inducible factor (HIF)‐1α levels controlled the switch of NSC expansion to differentiation. Finally, we provide evidence that high glycolytic activity of NSCs is required to prevent their precocious differentiation in vivo. Thus, blood vessel function is required for efficient NSC differentiation in the developing cerebral cortex by providing oxygen and possibly regulating NSC metabolism.


Nature Cell Biology | 2016

Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis

Ozdemirhan Sercin; Jean-Christophe Larsimont; Andrea E. Karambelas; Véronique Marthiens; Virginie Moers; Bram Boeckx; Marie Le Mercier; Diether Lambrechts; Renata Basto; Cédric Blanpain

Aneuploidy is found in most solid tumours, but it remains unclear whether it is the cause or the consequence of tumorigenesis. Using Plk4 overexpression (PLK4OE) during epidermal development, we assess the impact of centrosome amplification and aneuploidy on skin development and tumorigenesis. PLK4OE in the developing epidermis induced centrosome amplification and multipolar divisions, leading to p53 stabilization and apoptosis of epidermal progenitors. The resulting delayed epidermal stratification led to skin barrier defects. Plk4 transgene expression was shut down postnatally in the surviving mice and PLK4OE mice never developed skin tumours. Concomitant PLK4OE and p53 deletion (PLK4OE/p53cKO) rescued the differentiation defects, but did not prevent the apoptosis of PLK4OE cells. Remarkably, the short-term presence of cells with supernumerary centrosomes in PLK4OE/p53cKO mice was sufficient to generate aneuploidy in the adult epidermis and triggered spontaneous skin cancers with complete penetrance. These results reveal that aneuploidy induced by transient centrosome amplification can accelerate tumorigenesis in p53-deficient cells.


The Journal of Pathology | 2015

Uncovering the genomic heterogeneity of multifocal breast cancer

Christine Desmedt; Debora Fumagalli; Elisabetta Pietri; Gabriele Zoppoli; David Norman Brown; Serena Nik-Zainal; Gunes Gundem; Françoise Rothé; Samira Majjaj; Anna Garuti; Enrico Carminati; Sherene Loi; Thomas Van Brussel; Bram Boeckx; Marion Maetens; Laura Mudie; Delphine Vincent; Naima Kheddoumi; Luigi Serra; Ilaria Massa; Alberto Ballestrero; Dino Amadori; Roberto Salgado; Alexandre de Wind; Diether Lambrechts; Martine Piccart; Denis Larsimont; Peter J. Campbell; Christos Sotiriou

Multifocal breast cancer (MFBC), defined as multiple synchronous unilateral lesions of invasive breast cancer, is relatively frequent and has been associated with more aggressive features than unifocal cancer. Here, we aimed to investigate the genomic heterogeneity between MFBC lesions sharing similar histopathological parameters. Characterization of different lesions from 36 patients with ductal MFBC involved the identification of non‐silent coding mutations in 360 protein‐coding genes (171 tumour and 36 matched normal samples). We selected only patients with lesions presenting the same grade, ER, and HER2 status. Mutations were classified as ‘oncogenic’ in the case of recurrent substitutions reported in COSMIC or truncating mutations affecting tumour suppressor genes. All mutations identified in a given patient were further interrogated in all samples from that patient through deep resequencing using an orthogonal platform. Whole‐genome rearrangement screen was further conducted in 8/36 patients. Twenty‐four patients (67%) had substitutions/indels shared by all their lesions, of which 11 carried the same mutations in all lesions, and 13 had lesions with both common and private mutations. Three‐quarters of those 24 patients shared oncogenic variants. The remaining 12 patients (33%) did not share any substitution/indels, with inter‐lesion heterogeneity observed for oncogenic mutation(s) in genes such as PIK3CA, TP53, GATA3, and PTEN. Genomically heterogeneous lesions tended to be further apart in the mammary gland than homogeneous lesions. Genome‐wide analyses of a limited number of patients identified a common somatic background in all studied MFBCs, including those with no mutation in common between the lesions. To conclude, as the number of molecular targeted therapies increases and trials driven by genomic screening are ongoing, our findings highlight the presence of genomic inter‐lesion heterogeneity in one‐third, despite similar pathological features. This implies that deeper molecular characterization of all MFBC lesions is warranted for the adequate management of those cancers.


Journal of Physical Chemistry B | 2012

Experimental and theoretical observation of different intramolecular H-bonds in lysine conformations

Bram Boeckx; Guido Maes

Due to the importance of the structure of amino acids for the folding and functionality of proteins, the conformational behavior of lysine has been investigated. Experimental matrix-isolation FT-IR spectra have been recorded. These spectra were interpreted using an extended theoretical DFT and MP2 study. Theoretically, 28 (DFT) and 18 (MP2) conformations were found with ΔE < 10 kJ mol(-1). Incorporation of the entropy term changed the relative order of the stability because of the large unfavorable effect of this term for the conformations with one or two intramolecular H-bonds. As a matter of fact, the predicted abundances are strongly temperature dependent. The abundant conformations of lysine at sublimation temperature can be characterized by the type of amino acid backbone and the eventual additional H-bond in four groups. These groups are predicted to be detectable in the matrix, as their abundances are all larger than 5%. The theoretical spectral data of the most abundant conformation of a particular group are used to represent the group. In the matrix-isolation FT-IR spectrum all the important, H-bonded involved modes (ν(OH), ν(NH(2)), ν(C═O), γ(OH), δ(OH) and γ(NH(2))) of the four conformational groups were observed. A linear correlation between the stretching frequency shift ν(XH) and the elongation of the XH distance Δr(XH) in different conformations of lysine and other amino acids has been observed. The experimental frequencies are in good relationship with the theoretically obtained data, which is proven by a mean frequency deviation for the most abundant conformation is 12.6 cm(-1).


Biophysical Chemistry | 2012

The conformational behavior and H-bond structure of asparagine: a theoretical and experimental matrix-isolation FT-IR study.

Bram Boeckx; Guido Maes

Due to the high importance of the structural properties of peptides, the conformational behavior of one of their elementary building blocks, asparagine, has been investigated in this work. Matrix-isolation FT-IR spectroscopy is a suitable technique to investigate the intrinsic properties of small molecules. Asparagine has been subjected to matrix-isolation FT-IR spectroscopy supported with DFT and MP2 calculations. DFT optimization of asparagine resulted in 10 stable conformations with ∆E(DFT)<10 kJ.mol(-1). Compared to a previous study, one new conformation has been revealed. Further optimization at the MP2/6-31++G** level resulted in seven conformations with ∆E(MP)<10 kJ.mol(-1). A conformation containing the three intramolecular H-bonds, i.e. C=O(sc)…HN(bb), C=O(bb)…HN(sc) and OH(bb)…N(bb) appeared to be the most stable one at both levels despite the large negative entropy contribution due to these 3 H-bonds. At the sublimation temperature of 353 K, the DFT method predicts four and the MP2 method six conformations to be present in the experimental matrix-isolation spectrum. These conformations have different intramolecular H-bonds, which has allowed to identify at least 4 low energy conformations in the FT-IR spectrum. Detailed comparison between theory and experiment resulted in a mean frequency deviation of 7.6 cm(-1).

Collaboration


Dive into the Bram Boeckx's collaboration.

Top Co-Authors

Avatar

Diether Lambrechts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Guido Maes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bernard Thienpont

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Dominiek Smeets

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Matthieu Moisse

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Deniz Öner

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Eveline Putzeys

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lode Godderis

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Manosij Ghosh

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Peter Carmeliet

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge