Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bram Govaerts is active.

Publication


Featured researches published by Bram Govaerts.


Critical Reviews in Plant Sciences | 2009

Conservation agriculture and soil carbon sequestration: between myth and farmer reality.

Bram Govaerts; Nele Verhulst; A. Castellanos-Navarrete; Ken D. Sayre; John Dixon; Luc Dendooven

Improving food security, environmental preservation and enhancing livelihood should be the main targets of the innovators of todays farming systems. Conservation agriculture (CA), based on minimum tillage, crop residue retention, and crop rotations, has been proposed as an alternative system combining benefits for the farmer with advantages for the society. This paper reviews the potential impact of CA on C sequestration by synthesizing the knowledge of carbon and nitrogen cycling in agriculture; summarizing the influence of tillage, residue management, and crop rotation on soil organic carbon stocks; and compiling the existing case study information. To evaluate the C sequestration capacity of farming practices, their influence on emissions from farming activities should be considered together with their influence on soil C stocks. The largest contribution of CA to reducing emissions from farming activities is made by the reduction of tillage operations. The soil C case study results are not conclusive. In 7 of the 78 cases withheld, the soil C stock was lower in zero compared to conventional tillage, in 40 cases it was higher, and in 31 of the cases there was no significant difference. The mechanisms that govern the balance between increased or no sequestration after conversion to zero tillage are not clear, although some factors that play a role can be distinguished, e.g., root development and rhizodeposits, baseline soil C content, bulk density and porosity, climate, landscape position, and erosion/deposition history. Altering crop rotation can influence soil C stocks by changing quantity and quality of organic matter input. More research is needed, especially in the tropical areas where good quantitative information is lacking. However, even if C sequestration is questionable in some areas and cropping systems, CA remains an important technology that improves soil processes, controls soil erosion and reduces production cost.


Applied and Environmental Microbiology | 2010

Phylogenetic and Multivariate Analyses To Determine the Effects of Different Tillage and Residue Management Practices on Soil Bacterial Communities

Javier A. Ceja-Navarro; Flor N. Rivera-Orduña; Leonardo Patiño-Zúñiga; Antón Vila-Sanjurjo; José Crossa; Bram Govaerts; Luc Dendooven

ABSTRACT Bacterial communities are important not only in the cycling of organic compounds but also in maintaining ecosystems. Specific bacterial groups can be affected as a result of changes in environmental conditions caused by human activities, such as agricultural practices. The aim of this study was to analyze the effects of different forms of tillage and residue management on soil bacterial communities by using phylogenetic and multivariate analyses. Treatments involving zero tillage (ZT) and conventional tillage (CT) with their respective combinations of residue management, i.e., removed residue (−R) and kept residue (+R), and maize/wheat rotation, were selected from a long-term field trial started in 1991. Analysis of bacterial diversity showed that soils under zero tillage and crop residue retention (ZT/+R) had the highest levels of diversity and richness. Multivariate analysis showed that beneficial bacterial groups such as fluorescent Pseudomonas spp. and Burkholderiales were favored by residue retention (ZT/+R and CT/+R) and negatively affected by residue removal (ZT/−R). Zero-tillage treatments (ZT/+R and ZT/−R) had a positive effect on the Rhizobiales group, with its main representatives related to Methylosinus spp. known as methane-oxidizing bacteria. It can be concluded that practices that include reduced tillage and crop residue retention can be adopted as safer agricultural practices to preserve and improve the diversity of soil bacterial communities.


Plant and Soil | 2008

Aggregation and C and N contents of soil organic matter fractions in a permanent raised-bed planting system in the Highlands of Central Mexico

Kelly Lichter; Bram Govaerts; Johan Six; Ken D. Sayre; Jozef Deckers; Luc Dendooven

Permanent raised bed planting with crop residue retention is a form of conservation agriculture that has been proposed as an alternative to conventional tillage for wheat production systems in the Central Highlands of Mexico. A field experiment comparing permanent and tilled raised beds with different residue management under rainfed conditions was started at El Batán (State of Mexico, Mexico) in 1999. The percentage of small and large macroaggregates and mean weight diameter (MWD) was significantly larger in permanent raised beds compared to conventionally tilled raised beds both with full crop residue retention (average for maize and wheat), while the percentages free microaggregates was lower. The percentages of small and large macroaggregates and mean weight diameter (MWD) was significantly larger in permanent raised beds with residue retention compared to permanent raised beds with removal of the residue (average for maize and wheat), while the percentages free microaggregates and silt and clay fraction was lower. Cultivation of maize significantly reduced the large macroaggregates, while wheat reduced the silt and clay fraction (average over all systems). Cultivation of maize reduced the C and N content of the free microaggregates compared to soil cultivated with wheat, while removal of plant residue reduced the C and N content of the silt and clay fraction compared to soil where residue was retained. The C and N content of the coarse particulate organic matter (cPOM) and microaggregates within the macroaggregates was significantly larger in permanent raised beds compared to conventionally tilled raised beds both with full residue retention, while C and N content of the cPOM was significantly lower when residue was removed or partially removed compared to the soil where the residue was retained. The δ13C ‰ signatures of the macroaggregates, microaggregates, the silt and clay fraction, cPOM and microaggregates within the macroaggregates were not affected by tillage or residue management when wheat was the last crop, but removal of residue reduced the δ13C ‰ signatures of the macro-, microaggregates and microaggregates within the macroaggregates significantly compared to soil where the residue was retained. Retaining only 30–50% of the organic residue still improved the soil structure considerably compared to plots where it was removed completely. Permanent raised beds without residue retention, however, is a practice leading to soil degradation.


Plant and Soil | 2011

Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system

Nele Verhulst; Fabian Kienle; Ken D. Sayre; Jozef Deckers; Dirk Raes; Agustin Limon-Ortega; Leonardo Tijerina-Chavez; Bram Govaerts

There is a clear need to develop conservation agriculture technologies appropriate for surface irrigated conditions, and the adoption by small-scale farmers. The objective of this paper is to evaluate the effect on soil quality of five different tillage-crop residue management systems (conventionally tilled raised beds [CTB] with residue incorporated and permanent raised beds [PB] with residue burned, removed, partly retained or fully retained). Data were collected in a long-term trial established in 1992 with a wheat-maize rotation under irrigated, arid conditions in north-western Mexico. Three groups of tillage-straw systems with different characteristics in relation to the soil environment were distinguished: PB-straw burned, CTB-straw incorporated, and PB-straw not burned. The PB-straw burned had high electrical conductivity, Na concentration and penetration resistance and low soil resilience and aggregation, showing that the combination of PB with the burning of residues is not a sustainable management option. The CTB-straw incorporated was distinguished from the PB practices by the soil physical variables, especially the low direct infiltration and aggregate stability, indicating degradation of physical soil quality in this system. The practice of PB, where all or part of the residue is retained in the field, seems to be the most sustainable option for this cropping system.


Climate change and crop production | 2010

How conservation agriculture can contribute to buffering climate change.

Peter Hobbs; Bram Govaerts

Agriculture contributes significantly to greenhouse gas (GHG) emissions: CO 2 , CH 4 and N 2 O. Promoting agricultural practices that mitigate climate change by reducing GHG emissions is important; but those same practices also have to improve farmer production and income and buffer the production system against changes in climate. New agricultural practices also need to prevent further soil degradation and improve system resilience. Conservation agriculture (CA), based on minimal soil disturbance, permanent ground cover and crop rotations is a management system that achieves these goals; it results in improved soil physical and biological health, better nutrient cycling and crop growth. CA also increases water infiltration and soil penetration by roots, which allows crops to better adapt to lower rainfall and make better use of irrigation water. Water and wind erosion are also reduced by CA since the soil surface is protected and water runoff is lowered as more water enters the soil profile. CA can also help to mitigate climate change. Growing rice with less water and adopting CA practices results in less CH 4 emissions. However, care has to be taken with fertilizer management to minimize N 2 O emissions that can increase under resulting aerobic conditions. CA can also substantially reduce CO 2 emissions through reduced diesel use and increased sequestration of C in the soil. This chapter recommends that an integrated research and participatory extension is needed to fine tune CA to specific locations to convince farmers to adopt this technology.


Agronomy for Sustainable Development | 2011

The Use of the Marasha Ard Plough for Conservation Agriculture in Northern Ethiopia

Jan Nyssen; Bram Govaerts; Tesfay Araya; Wim Cornelis; Hans Bauer; Mitiku Haile; Ken D. Sayre; Jozef Deckers

Indigenous tillage systems are often undervalued in conservation agriculture (CA). In Ethiopia, since the 1970s there have been several attempts to develop and implement often major modifications to the marasha, the traditional ox-drawn ard plough, with the main aim of creating various types of surface depressions. The establishment of furrows and ridges increases soil moisture and grain yield and reduces soil loss. Dissemination of the modified tools, however, remains limited. Recent tendencies are towards testing relatively simple conservation agriculture tools. Major challenges remain, however; the need for capacity building and problems in marketing the tools. From experimental plots, often worked with exotic tools, there is a long road to real adoption by farmers. Rather than developing yet another CA tool, we investigate whether CA-based resource-conserving technologies might be achieved successfully with simple changes to the use of the marasha. On-farm observations on traditional conservation techniques were carried out throughout the northern Ethiopian highlands, and experiments were conducted involving resource-conserving technologies. Farmers traditionally use the marasha ard plough for various types of in situ soil and water conservation by creating surface depressions, either at the moment of sowing (terwah, derdero) or after crop emergence (shilshalo). Building upon this indigenous knowledge, we further developed resource-conserving technologies into a system named derdero+, whereby the traditional ard plough was found suitable for a “bed-and-furrow” system. From the socio-economic point of view, implementation of permanent beds and retention of stubble leads to decreased oxen (and straw) requirements, but also to an increased need for weeding in the first years. To overcome that problem, we introduced glyphosate herbicide into the tillage system. The decreased runoff (−51%) and soil loss (−81%) allow protection of the downslope areas from flooding, but soil nutrient build-up and soil structure improvement are slow processes, and hence the full benefit of the permanent bed system can only be expected after some years. Overall, this type of resource-conserving technology can be part of the ongoing intensification process which includes physical soil and water conservation, slope reforestation and irrigation development. It has, however, its own niche: the cropped land sensu stricto, i.e. the most important part of the land, both for the farmer and for a nation that is striving for long-term food security.


Plant and Soil | 2009

Using NDVI and soil quality analysis to assess influence of agronomic management on within-plot spatial variability and factors limiting production

Nele Verhulst; Bram Govaerts; K.D. Sayre; Jozef Deckers; Isabelle François; Luc Dendooven

Crop growth and yield are the result of the efficiency of the chosen agricultural management system within the boundaries of the agro-ecological environment. Linking spatial variability in crop performance to differences in soil attributes could identify the limiting factors driving the system, since patterns of crop performance will follow the spatial variability of the underlying limiting soil attributes. The Greenseeker handheld NDVI sensor was used to determine the within-plot spatial variability of crop performance in the different management treatments of a long-term (started 1991) tillage and residue management trial. Soil quality was measured spatially in the same plots. Under zero tillage with residue removal, soil quality and crop performance followed micro-topography with higher values where elevation was lower. Under zero tillage with residue retention soil quality was high throughout the field, ensuring uniform crop growth and under conventional tillage, soil quality was intermediate. Crop performance followed the same pattern as soil moisture and the related attributes infiltration, soil structure and organic matter. Thus soil moisture is the main limiting factor of the system and it is essential for the sustainability of any management practice developed for the subtropical highlands that soil water capture and storage are optimal. Zero tillage with residue retention is therefore the practice that will result in the most sustainable management and the most stable yields for this target area.


Plant and Soil | 2007

Evaluating spatial within plot crop variability for different management practices with an optical sensor

Bram Govaerts; Nele Verhulst; Ken D. Sayre; Pieter De Corte; Bart Goudeseune; Kelly Lichter; Josse Crossa; Jozef Deckers; Luc Dendooven

It is essential to have an indication of the sustainability of an agricultural system in addition to the potential, immediate benefits well before the catastrophic consequences of non-sustainability become apparent. Long-term experiments are best suited to test sustainability of a given system. This paper has a dual objective: (1) evaluate the Greenseeker handheld NDVI sensor as a tool for measuring within plot spatial variability, (2) address the question whether different management practices affect spatial within-plot crop growth variability and what this spatial variability tells us about the cropping system performance. Therefore, spatial and time variability of crop performance were measured during the 2004 and 2005 crop cycle for all plots of the different management treatments of a long-term (started 1991) tillage and residue management trial. The NDVI readings measured with the handheld sensor correlated well with the visual scoring in the field. The hand-held sensor is time-efficient and gave reproducible results. The potential for using this tool to detect spatial crop variability, both within and between plots/treatments, is promising. The coefficient of variation (CV) for the NDVI measurement sequence in each plot was determined. The CV’s throughout the crop season reflected the canopy expansion and senescence curve of maize and wheat. The CV was high at the beginning of the crop season, however, once the canopy began to close, leaves from larger plants covered the leaves and whorl of smaller plants, extending further into the linear row. Measurements to investigate spatial variability related to crop performance should thus be done after this initial stage at the end of the vegetative period when the vegetative biomass of the crops is fully established. Zero tillage systems without surface residue retention produced high CVs of the NDVI sequence and high spatial crop variability throughout the season, even after the vegetative period. As the only factors differing between the different plots are the tillage/residue/rotation practices and as similar patterns were found for all plots representing repetitions of the same management practice (zero tillage without residue retention), increased variability is an indicator of agronomic mismanagement or, conversely, of sound agriculturally production practices.


Plant and Soil | 2010

Molecular characterization of soil bacterial communities in contrasting zero tillage systems

Javier A. Ceja-Navarro; Flor N. Rivera; Leonardo Patiño-Zúñiga; Bram Govaerts; Rodolfo Marsch; Antón Vila-Sanjurjo; Luc Dendooven

It is well known that agricultural practices change the physical and chemical characteristics of soil. As a result, microbial populations can also be affected. The aim of this study was to analyze the effect on soil bacterial communities of zero tillage (ZT) under maize monoculture (MM) with crop residue removal (-R) (MM/-R treatment), compared to a ZT system under wheat monoculture (WW) with crop retention (+R) (WW/+R treatment). Phylogenetic analysis was used to characterize soil bacterial communities. Phylogenetic groups found exclusively in MM/-R were Caldilineales, Chromatiales, Oscillatoriales, Legionellales, Nitrosomonadales and unclassified ∂-Proteobacteria, while Bacillales, Burkholderiales, Pseudomonadales and Rubrobacteriales were found only in WW/+R. Sequences of bacteria related to fluorescent Pseudomonas sp. were detected only in WW/+R. Acidobacteria, a largely unknown group of bacteria, were the dominant group in both treatments with a relative proportion of 0.703 and 0.517 for MM/+R and WW/-R respectively. It was found that zero tillage with removal of crop residue in soil cultivated with a monoculture of maize strongly reduced microbial diversity (H = 3.30; D = 0.9040) compared to soil where crop residue was retained in a wheat zero tillage situation (H = 4.15; D = 0.9848).


Communications in Soil Science and Plant Analysis | 2012

NIR Spectroscopy: An Alternative for Soil Analysis

Mariela Fuentes; Claudia Hidalgo; I. González-Martín; José Miguel Hernández-Hierro; Bram Govaerts; K.D. Sayre; Jorge D. Etchevers

Advances in laboratory instrumentation and chemometrics provide alternatives to traditional methods of conducting soil chemical analysis. One of these is infrared diffuse reflectance spectroscopy in the near-infrared spectral range (NIRS). Herein we report the results of a multinational study to develop useful calibrations associating NIRS spectra with laboratory-measured results for total soil carbon (C), total soil nitrogen (N), δ13C, and δ15N from a single soil site in Mexico subjected to zero- and conventional-tillage regimens with and without crop residues and crop rotations of maize and wheat across 16 years. Modified partial least squares regression (MPLS) was used to obtain useful NIR predictions for total soil C and N, with ratio performance deviation (RPD) values of 6.8 and 2.6, respectively. Corresponding multiple correlation coefficients (RSQs) for C and N were 0.98 and 0.85, with standard errors of prediction (SEPs) of ±0.45 g C kg–1 and ±0.09g Nkg–1, respectively. The generation of δ15N and δ13C models produced different NIR recordings in soils with and without crop residues. Application of discriminant partial least squares (DPLS) statistics to the NIR spectral data allowed us to discriminate soils with and without residues. The prediction confidence for stable isotopes was 90% (internal validation) and 94% (external validation). Modified partial least squares regression was used to estimate δ15N and δ13C. Ratio performance deviation, RSQ, and SEP values obtained for δ13C and δ15N were 2.44 and 3.57, 0.83 and 0.81, ±0.5‰ (parts per thousand) and ±0.45‰ in soils with residues and 2.5 and 3.8, 0.93 and 0.92, and ±0.2‰ and ±0.23‰ in soils without residues, respectively. Overall, results obtained with NIRS were comparable to those obtained using conventional analytical methods, a finding that has wide relevance to agricultural soils and environmental studies in tropical locations. However, further testing is necessary to confirm that the calibration models are neither site nor instrument specific.

Collaboration


Dive into the Bram Govaerts's collaboration.

Top Co-Authors

Avatar

Jozef Deckers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ken D. Sayre

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nele Verhulst

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nele Verhulst

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitiku Haile

Hong Kong Environmental Protection Department

View shared research outputs
Top Co-Authors

Avatar

K.D. Sayre

International Maize and Wheat Improvement Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge