Bram Hoex
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bram Hoex.
Applied Physics Letters | 2006
Bram Hoex; Sbs Stephan Heil; E Erik Langereis; van de Mcm Richard Sanden; Wmm Erwin Kessels
Excellent surface passivation of c-Si has been achieved by Al2O3 films prepared by plasma-assisted atomic layer deposition, yielding effective surface recombination velocities of 2 and 13cm∕s on low resistivity n- and p-type c-Si, respectively. These results obtained for ∼30nm thick Al2O3 films are comparable to state-of-the-art results when employing thermal oxide as used in record-efficiency c-Si solar cells. A 7nm thin Al2O3 film still yields an effective surface recombination velocity of 5cm∕s on n-type silicon.
Journal of Applied Physics | 2008
Bram Hoex; Jjh Joost Gielis; van de Mcm Richard Sanden; Wmm Erwin Kessels
Al2O3 is a versatile high-κ dielectric that has excellent surface passivation properties on crystalline Si (c-Si), which are of vital importance for devices such as light emitting diodes and high-efficiency solar cells. We demonstrate both experimentally and by simulations that the surface passivation can be related to a satisfactory low interface defect density in combination with a strong field-effect passivation induced by a negative fixed charge density Qf of up to 1013 cm−2 present in the Al2O3 film at the interface with the underlying Si substrate. The negative polarity of Qf in Al2O3 is especially beneficial for the passivation of p-type c-Si as the bulk minority carriers are shielded from the c-Si surface. As the level of field-effect passivation is shown to scale with Qf2, the high Qf in Al2O3 tolerates a higher interface defect density on c-Si compared to alternative surface passivation schemes.
Journal of Applied Physics | 2008
Bram Hoex; J Jeroen Schmidt; Peter Pohl; van de Mcm Richard Sanden; Wmm Erwin Kessels
Thin Al2O3 films with a thickness of 7–30 nm synthesized by plasma-assisted atomic layer deposition (ALD) were used for surface passivation of crystalline silicon (c-Si) of different doping concentrations. The level of surface passivation in this study was determined by techniques based on photoconductance, photoluminescence, and infrared emission. Effective surface recombination velocities of 2 and 6 cm/s were obtained on 1.9 Ω cm n-type and 2.0 Ω cm p-type c-Si, respectively. An effective surface recombination velocity below 1 cm/s was unambiguously obtained for nearly intrinsic c-Si passivated by Al2O3. A high density of negative fixed charges was detected in the Al2O3 films and its impact on the level of surface passivation was demonstrated experimentally. The negative fixed charge density results in a flat injection level dependence of the effective lifetime on p-type c-Si and explains the excellent passivation of highly B-doped c-Si by Al2O3. Furthermore, a brief comparison is presented between the ...
Applied Physics Letters | 2007
Bram Hoex; J Jeroen Schmidt; Robert Bock; Pietro P. Altermatt; van de Mcm Richard Sanden; Wmm Erwin Kessels
From lifetime measurements, including a direct experimental comparison with thermal SiO2, a-Si:H, and as-deposited a-SiNx:H, it is demonstrated that Al2O3 provides an excellent level of surface passivation on highly B-doped c-Si with doping concentrations around 1019cm−3. The Al2O3 films, synthesized by plasma-assisted atomic layer deposition and with a high fixed negative charge density, limit the emitter saturation current density of B-diffused p+-emitters to ∼10 and ∼30fA∕cm2 on >100 and 54Ω∕sq sheet resistance p+-emitters, respectively. These results demonstrate that highly doped p-type Si surfaces can be passivated as effectively as highly doped n-type surfaces.
Applied Physics Letters | 2008
Jan Benick; Bram Hoex; M.C.M. van de Sanden; W.M.M. Kessels; O. Schultz; Stefan W. Glunz
In order to utilize the full potential of solar cells fabricated on n-type silicon, it is necessary to achieve an excellent passivation on B-doped emitters. Experimental studies on test structures and theoretical considerations have shown that a negatively charged dielectric layer would be ideally suited for this purpose. Thus, in this work the negative-charge dielectric Al2O3 was applied as surface passivation layer on high-efficiency n-type silicon solar cells. With this front surface passivation layer, a confirmed conversion efficiency of 23.2% was achieved. For the open-circuit voltage Voc of 703.6mV, the upper limit for the emitter saturation current density J0e, including the metalized area, has been evaluated to be 29fA∕cm2. This clearly shows that an excellent passivation of highly doped p-type c-Si can be obtained at the device level by applying Al2O3.
Energy and Environmental Science | 2014
Xiaogang Liu; Paul R. Coxon; Marius Peters; Bram Hoex; Jacqueline M. Cole; Derek J. Fray
Black silicon (BSi) represents a very active research area in renewable energy materials. The rise of BSi as a focus of study for its fundamental properties and potentially lucrative practical applications is shown by several recent results ranging from solar cells and light-emitting devices to antibacterial coatings and gas-sensors. In this paper, the common BSi fabrication techniques are first reviewed, including electrochemical HF etching, stain etching, metal-assisted chemical etching, reactive ion etching, laser irradiation and the molten salt Fray-Farthing-Chen-Cambridge (FFC-Cambridge) process. The utilization of BSi as an anti-reflection coating in solar cells is then critically examined and appraised, based upon strategies towards higher efficiency renewable solar energy modules. Methods of incorporating BSi in advanced solar cell architectures and the production of ultra-thin and flexible BSi wafers are also surveyed. Particular attention is given to routes leading to passivated BSi surfaces, which are essential for improving the electrical properties of any devices incorporating BSi, with a special focus on atomic layer deposition of Al2O3. Finally, three potential research directions worth exploring for practical solar cell applications are highlighted, namely, encapsulation effects, the development of micro-nano dual-scale BSi, and the incorporation of BSi into thin solar cells. It is intended that this paper will serve as a useful introduction to this novel material and its properties, and provide a general overview of recent progress in research currently being undertaken for renewable energy applications.
Journal of Applied Physics | 2008
Jjh Joost Gielis; Bram Hoex; van de Mcm Richard Sanden; Wmm Erwin Kessels
Thin films of Al2O3 synthesized by atomic layer deposition provide an excellent level of interface passivation of crystalline silicon (c-Si) after a postdeposition anneal. The Al2O3 passivation mechanism has been elucidated by contactless characterization of c-Si/Al2O3 interfaces by optical second-harmonic generation (SHG). SHG has revealed a negative fixed charge density in as-deposited Al2O3 on the order of 1011 cm−2 that increased to 1012–1013 cm−2 upon anneal, causing effective field-effect passivation. In addition, multiple photon induced charge trapping dynamics suggest a reduction in recombination channels after anneal and indicate a c-Si/Al2O3 conduction band offset of 2.02±0.04 eV.
Journal of Applied Physics | 2009
G Gijs Dingemans; Peter Engelhart; Robert Seguin; F Einsele; Bram Hoex; van de Mcm Richard Sanden; Wmm Erwin Kessels
The thermal and ultraviolet (UV) stability of crystalline silicon (c-Si) surface passivation provided by atomic layer deposited Al2O3 was compared with results for thermal SiO2. For Al2O3 and Al2O3/a-SiNx:H stacks on 2 Ω cm n-type c-Si, ultralow surface recombination velocities of Seff 800 °C) used for screen printed c-Si solar cells. Effusion measurements revealed the loss of hydrogen and oxygen during firing through the detection of H2 and H2O. Al2O3 also demonstrated UV stability with the surface passivation improving during UV irradiation.
Applied Physics Letters | 2014
Baochen Liao; Bram Hoex; Armin G. Aberle; Dongzhi Chi; Charanjit S. Bhatia
In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiOx) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiOx films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiOx films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiOx films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiOx has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiOx in the field of high-efficiency silicon wafer solar cells.In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiOx) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiOx films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiOx films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiOx films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiOx has an optimal refract...
IEEE Journal of Photovoltaics | 2013
Ankit Khanna; Thomas Mueller; Rolf Stangl; Bram Hoex; Prabir Kanti Basu; Armin G. Aberle
The fill factor of silicon wafer solar cells is strongly influenced by recombination currents and ohmic resistances. A practical upper limit for the fill factor of crystalline silicon solar cells operating under low-level injection is set by recombination in the quasi-neutral bulk and at the two cell surfaces. Series resistance, shunt resistance, and additional recombination currents further lower the fill factor. For process optimization or loss analysis of solar cells, it is important to determine the influence of both ohmic and recombination loss mechanisms on the fill factor. In this paper, a method is described to quantify the loss in fill factor due to series resistance, shunt resistance, and additional recombination currents. Only the 1-Sun J-V curve, series resistance at the maximum power point, and shunt resistance need to be determined to apply the method. Application of the method is demonstrated on an 18.4% efficient inline-diffused p-type silicon wafer solar cell and a 21.1% efficient heterojunction n-type silicon wafer solar cell. Our analysis does not require J-V curve fitting to extract diode saturation current densities or ideality factor; however, the results are shown to be consistent with curve fitting results if the cells two-diode model parameters can be unambiguously determined by curve fitting.