Bram Trachet
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bram Trachet.
International Journal of Cardiology | 2012
Katarina Möberg; Sylvia De Nobele; Daniel Devos; Els Goetghebeur; Patrick Segers; Bram Trachet; Chris Vervaet; Marjolijn Renard; Paul Coucke; Bart Loeys; Anne De Paepe; Julie De Backer
BACKGROUND Aortic root dilation, dissection and rupture are major clinical problems in Marfan syndrome (MFS). Although β-blockers remain the standard of preventive treatment, preliminary results from animal studies and a selected group of severely affected MFS children show significant benefit from treatment with losartan, an angiotensin II receptor blocker with TGF-β inhibiting potential. Large-scale human trials are now needed to confirm these results. This trial aims to evaluate the combined effect of both drugs. METHODS We are conducting a prospective randomized placebo controlled double blind phase III study aiming to include 174 MFS patients (age ≥ 10 years and z-score ≥ 2). Patients already taking β-blockers are randomized for weight-adjusted treatment with losartan versus placebo. The primary endpoint is decrease in aortic root growth rate. Secondary endpoints are aortic dissection/surgery, progression of aortic/mitral regurgitation, arterial stiffness, left ventricular systolic/diastolic function, quality of life and genetic modifiers. Echocardiography, vascular echo-Doppler and quality of life assessment will be performed at baseline and at 6-monthly follow-ups for 3 years. MRI evaluation will be performed at baseline and at the end of the trial. CONCLUSION This trial will study new therapeutic strategies for the prevention of serious cardiovascular complications in MFS. The uniqueness in our trial is that the additive effect of losartan and β-blocker will be evaluated in a large spectrum of disease severity. A combination of ultrasound and MRI will allow detailed evaluation of anatomic and functional properties of the aorta and left ventricle.
Journal of Computational and Applied Mathematics | 2013
Joris Bols; Joris Degroote; Bram Trachet; Benedict Verhegghe; Patrick Segers; Jan Vierendeels
In the modelling process of cardiovascular diseases, one often comes across the numerical simulation of the blood vessel wall. When the vessel geometry is patient-specific and is obtained in vivo via medical imaging, the stress distribution throughout the vessel wall is unknown. However, simulating the full physiological pressure load inside the blood vessel without incorporating the in vivo stresses will result in an inaccurate stress distribution and an incorrect deformation of the vessel wall. In this work a computational method is formulated to restore the zero-pressure geometry of patient-specific blood vessels, and to recover the in vivo stress field of the loaded structures at the moment of imaging. The proposed backward displacement method is able to solve the inverse problem iteratively using fixed point iterations. As only an update of the mesh is required, the formulation of this method allows for a straightforward implementation in combination with existing structural solvers, even if the structural solver is a black box.
Annals of Biomedical Engineering | 2011
Bram Trachet; Marjolijn Renard; Gianluca De Santis; Steven Staelens; Julie De Backer; Luca Antiga; Bart Loeys; Patrick Segers
Locally disturbed flow has been suggested to play a (modulating) role in abdominal aortic aneurysm (AAA) formation, but no longitudinal studies have been performed yet due to (a.o.) a lack of human data prior to AAA formation. In this study we made use of recent advances in small animal imaging technology in order to set up entirely mouse-specific computational fluid dynamics (CFD) simulations of the abdominal aorta in an established ApoE −/− mouse model of AAA formation, combining (i) in vivo contrast-enhanced micro-CT scans (geometrical model) and (ii) in vivo high-frequency ultrasound scans (boundary conditions). Resulting areas of disturbed flow at baseline were compared to areas of AAA at end-stage. Qualitative results showed that AAA dimension is maximal in areas that are situated proximal to those areas that experience most disturbed flow in three out of four S developing an AAA. Although further quantitative analysis did not reveal any obvious relationship between areas that experience most disturbed flow and the end-stage AAA dimensions, we cannot exclude that hemodynamics play a role in the initial phases of AAA formation. Due to its mouse-specific and in vivo nature, the presented methodology can be used in future research to link detailed and animal-specific (baseline) hemodynamics to (end-stage) arterial disease in longitudinal studies in mice.
Cardiovascular Research | 2015
Bram Trachet; Rodrigo A. Fraga-Silva; Alessandra Piersigilli; Alain Tedgui; Jessica Sordet-Dessimoz; Alberto Astolfo; Carole Van der Donckt; Peter Modregger; Marco Stampanoni; Patrick Segers; Nikolaos Stergiopulos
AIMS In this work, we provide novel insight into the morphology of dissecting abdominal aortic aneurysms in angiotensin II-infused mice. We demonstrate why they exhibit a large variation in shape and, unlike their human counterparts, are located suprarenally rather than infrarenally. METHODS AND RESULTS We combined synchrotron-based, ultra-high resolution ex vivo imaging (phase contrast X-Ray tomographic microscopy) with in vivo imaging (high-frequency ultrasound and contrast-enhanced micro-CT) and image-guided histology. In all mice, we observed a tear in the tunica media of the abdominal aorta near the ostium of the celiac artery. Independently we found that, unlike the gradual luminal expansion typical for human aneurysms, the outer diameter increase of angiotensin II-induced dissecting aneurysms in mice was related to one or several intramural haematomas. These were caused by ruptures of the tunica media near the ostium of small suprarenal side branches, which had never been detected by the established small animal imaging techniques. The tear near the celiac artery led to apparent luminal dilatation, while the intramural haematoma led to a dissection of the tunica adventitia on the left suprarenal side of the aorta. The number of ruptured branches was higher in those aneurysms that extended into the thoracic aorta, which explained the observed variability in aneurysm shape. CONCLUSION Our results are the first to describe apparent luminal dilatation, suprarenal branch ruptures, and intramural haematoma formation in dissecting abdominal aortic aneurysms in mice. Moreover, we validate and demonstrate the vast potential of phase contrast X-ray tomographic microscopy in cardiovascular small animal applications.
Molecular Imaging and Biology | 2011
Bert Vandeghinste; Bram Trachet; Marjolijn Renard; Christophe Casteleyn; Steven Staelens; Bart Loeys; Patrick Segers; Stefaan Vandenberghe
PurposeThe purpose of this study was to investigate if in vivo micro-computed tomography (CT) is a reliable alternative to micro-CT scanning of a vascular corrosion cast. This would allow one to study the early development of cardiovascular diseases.ProceduresDatasets using both modalities were acquired, segmented, and used to generate a 3D geometrical model from nine mice. As blood pool contrast agent, Fenestra VC-131 was used. Batson’s No. 17 was used as casting agent. Computational fluid dynamics simulations were performed on both datasets to quantify the difference in wall shear stress (WSS).ResultsAortic arch diameters show 30% to 40% difference between the Fenestra VC-131 and the casted dataset. The aortic arch bifurcation angles show less than 20% difference between both datasets. Numerically computed WSS showed a 28% difference between both datasets.ConclusionsOur results indicate that in vivo micro-CT imaging can provide an excellent alternative for vascular corrosion casting. This enables follow-up studies.
Laboratory Investigation | 2010
Christophe Van Steenkiste; Bram Trachet; Christophe Casteleyn; Denis Van Loo; Luc Van Hoorebeke; Patrick Segers; Anja Geerts; Hans Van Vlierberghe; Isabelle Colle
Vascular corrosion casting is an established method of anatomical preparation that has recently been revived and has proven to be an excellent tool for detailed three-dimensional (3D) morphological examination of normal and pathological microcirculation. In addition, the geometry provided by vascular casts can be further used to calculate wall shear stress (WSS) in a vascular bed using computational techniques. In the first part of this study, the microvascular morphological changes associated with portal hypertension (PHT) and cirrhosis in vascular casts are described. The second part of this study consists of a quantitative analysis of the WSS in the portal vein in casts of different animal models of PHT and cirrhosis using computational fluid dynamics (CFD). Microvascular changes in the splanchnic, hepatic and pulmonary territory of portal hypertensive and cirrhotic mice are described in detail with stereomicroscopic examination and scanning electron microscopy. To our knowledge, our results are the first to report the vascular changes in the common bile duct ligation cirrhotic model. Calculating WSS using CFD methods is a feasible technique in PHT and cirrhosis, enabling the differentiation between different animal models. First, a dimensional analysis was performed, followed by a CFD calculation describing the spatial and temporal WSS distributions in the portal vein. WSS was significantly different between sham/cirrhotic/pure PHT animals with the highest values in the latter. Up till now, no techniques have been developed to quantify WSS in the portal vein in laboratory animals. This study showed for the first time that vascular casting has an important role not only in the morphological evaluation of animal models of PHT and cirrhosis, but also in defining the biological response of the portal vein wall to hemodynamic changes. CFD in 3D geometries can be used to describe the spatial and temporal variations in WSS in the portal vein and to better understand the forces affecting mechanotransduction in the endothelium.
Computer Methods in Biomechanics and Biomedical Engineering | 2013
G. De Santis; Michele Conti; Bram Trachet; T. De Schryver; M. De Beule; Joris Degroote; Jan Vierendeels; Ferdinando Auricchio; Patrick Segers; Pascal Verdonck; Benedict Verhegghe
Carotid artery stenting (CAS) has emerged as a minimally invasive alternative to endarterectomy but its use in clinical treatment is limited due to the post-stenting complications. Haemodynamic actors, related to blood flow in the stented vessel, have been suggested to play a role in the endothelium response to stenting, including adverse reactions such as in-stent restenosis and late thrombosis. Accessing the flow-related shear forces acting on the endothelium in vivo requires space and time resolutions which are currently not achievable with non-invasive clinical imaging techniques but can be obtained from image-based computational analysis. In this study, we present a framework for accurate determination of the wall shear stress (WSS) in a mildly stenosed carotid artery after the implantation of a stent, resembling the commercially available Acculink (Abbott Laboratories, Abbott Park, Illinois, USA). Starting from angiographic CT images of the vessel lumen and a micro-CT scan of the stent, a finite element analysis is carried out in order to deploy the stent in the vessel, reproducing CAS in silico. Then, based on the post-stenting anatomy, the vessel is perfused using a set of boundary conditions: total pressure is applied at the inlet, and impedances that are assumed to be insensitive to the presence of the stent are imposed at the outlets. Evaluation of the CAS outcome from a geometrical and haemodynamic perspective shows the presence of atheroprone regions (low time-average WSS, high relative residence time) colocalised with stent malapposition and stent strut interconnections. Stent struts remain unapposed in the ostium of the external carotid artery disturbing the flow and generating abnormal shear forces, which could trigger thromboembolic events.
Journal of Biomechanical Engineering-transactions of The Asme | 2011
Bram Trachet; Joris Bols; Gianluca De Santis; Stefaan Vandenberghe; Bart Loeys; Patrick Segers
Computational fluid dynamics (CFD) simulations allow for calculation of a detailed flow field in the mouse aorta and can thus be used to investigate a potential link between local hemodynamics and disease development. To perform these simulations in a murine setting, one often needs to make assumptions (e.g. when mouse-specific boundary conditions are not available), but many of these assumptions have not been validated due to a lack of reference data. In this study, we present such a reference data set by combining high-frequency ultrasound and contrast-enhanced micro-CT to measure (in vivo) the time-dependent volumetric flow waveforms in the complete aorta (including seven major side branches) of 10 male ApoE -/- deficient mice on a C57Bl/6 background. In order to assess the influence of some assumptions that are commonly applied in literature, four different CFD simulations were set up for each animal: (i) imposing the measured volumetric flow waveforms, (ii) imposing the average flow fractions over all 10 animals, presented as a reference data set, (iii) imposing flow fractions calculated by Murrays law, and (iv) restricting the geometrical model to the abdominal aorta (imposing measured flows). We found that - even if there is sometimes significant variation in the flow fractions going to a particular branch - the influence of using average flow fractions on the CFD simulations is limited and often restricted to the side branches. On the other hand, Murrays law underestimates the fraction going to the brachiocephalic trunk and strongly overestimates the fraction going to the distal aorta, influencing the outcome of the CFD results significantly. Changing the exponential factor in Murrays law equation from 3 to 2 (as suggested by several authors in literature) yields results that correspond much better to those obtained imposing the average flow fractions. Restricting the geometrical model to the abdominal aorta did not influence the outcome of the CFD simulations. In conclusion, the presented reference dataset can be used to impose boundary conditions in the mouse aorta in future studies, keeping in mind that they represent a subsample of the total population, i.e., relatively old, non-diseased, male C57Bl/6 ApoE -/- mice.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Laurence Campens; Olivier Vanakker; Bram Trachet; Patrick Segers; Bart P. Leroy; Julie De Zaeytijd; Dirk Voet; Anne De Paepe; Tine De Backer; Julie De Backer
Objective—Pseudoxanthoma elasticum (PXE) is an autosomal recessive connective tissue disorder with involvement of the skin, the retina, and the cardiovascular system. Cardiovascular involvement is mainly characterized by mineralization and fragmentation of elastic fibers of blood vessels and premature atherosclerosis. We conducted an ultrasound study to investigate the cardiovascular phenotype and to propose recommendations for the management of patients with PXE and heterozygous ABCC6 mutation carriers. Approach and Results—Thirty-two patients, 23 carriers, and 28 healthy volunteers underwent cardiac and vascular ultrasound studies. Cardiac imaging revealed left ventricular diastolic dysfunction in patients with PXE with a significantly prolonged deceleration time and lower septal early diastolic velocities of the mitral annulus compared with controls. Carriers also demonstrated significantly prolonged deceleration time. Carotid-to-femoral pulse wave velocity was significantly increased in patients with PXE when compared with carriers and controls. Vascular imaging revealed a high prevalence of peripheral artery disease in both patients and carriers and a significantly higher carotid intima-media thickness compared with controls. Conclusions—The results of this study clearly demonstrate impaired left ventricular diastolic function, impairment of the elastic properties of the aorta, and a high prevalence of peripheral artery disease in patients with PXE. Carriers also seem to exhibit a cardiovascular phenotype with mainly mild diastolic dysfunction and accelerated atherosclerosis. Increased awareness for cardiovascular events in both patients and heterozygous carriers is warranted.
European Journal of Clinical Investigation | 2013
Sonaz Malekzadeh; Rodrigo A. Fraga-Silva; Bram Trachet; Fabrizio Montecucco; François Mach; Nikolaos Stergiopulos
Abdominal aortic aneurysm (AAA) is a complex degenerative disease, which leads to morbidity and mortality in a large portion of the elderly population. Current treatment options for AAA are quite limited as there is no proven indication for pharmacological therapy and surgery is recommended for AAA larger than 5·5 cm in luminal diameter. Thus, there is a great need to elucidate the underlying pathophysiological cellular and molecular mechanisms to develop effective therapies. In this narrative review, we will discuss recent findings concerning some potential molecular and clinical aspects of the renin–angiotensin system (RAS) in AAA pathophysiology.