Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bramanandam Manavathi is active.

Publication


Featured researches published by Bramanandam Manavathi.


Endocrine Reviews | 2013

Derailed estrogen signaling and breast cancer: an authentic couple.

Bramanandam Manavathi; Oindrilla Dey; Vijay Narsihma Reddy Gajulapalli; Raghavendra Singh Bhatia; Suresh Bugide; Rakesh Kumar

Estrogen or 17β-estradiol, a steroid hormone, plays a critical role in the development of mammary gland via acting through specific receptors. In particular, estrogen receptor-α (ERα) acts as a transcription factor and/or a signal transducer while participating in the development of mammary gland and breast cancer. Accumulating evidence suggests that the transcriptional activity of ERα is altered by the action of nuclear receptor coregulators and might be responsible, at least in part, for the development of breast cancer. In addition, this process is driven by various posttranslational modifications of ERα, implicating active participation of the upstream receptor modifying enzymes in breast cancer progression. Emerging studies suggest that the biological outcome of breast cancer cells is also influenced by the cross talk between microRNA and ERα signaling, as well as by breast cancer stem cells. Thus, multiple regulatory controls of ERα render mammary epithelium at risk for transformation upon deregulation of normal homeostasis. Given the importance that ERα signaling has in breast cancer development, here we will highlight how the activity of ERα is controlled by various regulators in a spatial and temporal manner, impacting the progression of the disease. We will also discuss the possible therapeutic value of ERα modulators as alternative drug targets to retard the progression of breast cancer.


Cancer Research | 2010

Cyclin-Dependent Kinase–Mediated Phosphorylation Plays a Critical Role in the Oncogenic Functions of PELP1

Binoj C. Nair; Sujit S. Nair; Dimple Chakravarty; Rambabu Challa; Bramanandam Manavathi; P. Renee Yew; Rakesh Kumar; Rajeshwar Rao Tekmal; Ratna K. Vadlamudi

Estrogen receptor (ER) signaling plays an important role in breast cancer progression, and ER functions are influenced by coregulatory proteins. PELP1 (proline-, glutamic acid-, and leucine-rich protein 1) is a nuclear receptor coregulator that plays an important role in ER signaling. Its expression is deregulated in hormonal cancers. We identified PELP1 as a novel cyclin-dependent kinase (CDK) substrate. Using site-directed mutagenesis and in vitro kinase assays, we identified Ser(477) and Ser(991) of PELP1 as CDK phosphorylation sites. Using the PELP1 Ser(991) phospho-specific antibody, we show that PELP1 is hyperphosphorylated during cell cycle progression. Model cells stably expressing the PELP1 mutant that lack CDK sites had defects in estradiol (E2)-mediated cell cycle progression and significantly affected PELP1-mediated oncogenic functions in vivo. Mechanistic studies showed that PELP1 modulates transcription factor E2F1 transactivation functions, that PELP1 is recruited to pRb/E2F target genes, and that PELP1 facilitates ER signaling cross talk with cell cycle machinery. We conclude that PELP1 is a novel substrate of interphase CDKs and that its phosphorylation is important for the proper function of PELP1 in modulating hormone-driven cell cycle progression and also for optimal E2F transactivation function. Because the expression of both PELP1 and CDKs is deregulated in breast tumors, CDK-PELP1 interactions will have implications in breast cancer progression.


Frontiers in Cell and Developmental Biology | 2014

Estrogen receptor coregulators and pioneer factors: the orchestrators of mammary gland cell fate and development

Bramanandam Manavathi; Venkata Subramanyam Kumar Samanthapudi; Vijay Narasimha Reddy Gajulapalli

The steroid hormone, 17β-estradiol (E2), plays critical role in various cellular processes such as cell proliferation, differentiation, migration and apoptosis, and is essential for reproduction and mammary gland development. E2 actions are mediated by two classical nuclear hormone receptors, estrogen receptor α and β (ERs). The activity of ERs depends on the coordinated activity of ligand binding, post-translational modifications (PTMs), and importantly the interaction with their partner proteins called “coregulators.” Because coregulators are proved to be crucial for ER transcriptional activity, and majority of breast cancers are ERα positive, an increased interest in the field has led to the identification of a large number of coregulators. In the last decade, gene knockout studies using mouse models provided impetus to our further understanding of the role of these coregulators in mammary gland development. Several coregulators appear to be critical for terminal end bud (TEB) formation, ductal branching and alveologenesis during mammary gland development. The emerging studies support that, coregulators along with the other ER partner proteins called “pioneer factors” together contribute significantly to E2 signaling and mammary cell fate. This review discusses emerging themes in coregulator and pioneer factor mediated action on ER functions, in particular their role in mammary gland cell fate and development.


Cellular Oncology | 2017

HPIP promotes epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer cells through PI3K/AKT pathway activation

Suresh Bugide; Vijay K. Gonugunta; Vasudevarao Penugurti; Vijaya Lakshmi Malisetty; Ratna K. Vadlamudi; Bramanandam Manavathi

PurposeHematopoietic PBX interacting protein (HPIP), a scaffold protein, is known to regulate the proliferation, migration and invasion in different cancer cell types. The aim of this study was to assess the role of HPIP in ovarian cancer cell migration, invasion and epithelial-mesenchymal transition (EMT), and to unravel the mechanism by which it regulates these processes.MethodsHPIP expression was assessed by immunohistochemistry of tissue microarrays containing primary ovarian tumor samples of different grades. OAW42, an ovarian carcinoma-derived cell line exhibiting a high HPIP expression, was used to study the role of HPIP in cell migration, invasion and EMT. HPIP knockdown in these cells was achieved using a small hairpin RNA (shRNA) approach. Cell migration and invasion were assessed using scratch wound and transwell invasion assays, respectively. The extent of EMT was assessed by determining the expression levels of Snail, Vimentin and E-cadherin using Western blotting. The effect of HPIP expression on AKT and MAPK activation was also investigated by Western blotting. Cell viabilities in response to cisplatin treatment were assessed using a MTT assay, whereas apoptosis was assessed by determining caspase-3 and PARP cleavage in ovarian carcinoma-derived SKOV3 cells.ResultsWe found that HPIP is highly expressed in high-grade primary ovarian tumors. In addition, we found that HPIP promotes the migration, invasion and EMT in OAW42 cells and induces EMT in these cells via activation of the PI3K/AKT pathway. The latter was found to lead to stabilization of the Snail protein and to repression of E-cadherin expression through inactivation of GSK-3β. We also found that HPIP expression confers cisplatin resistance to SKOV3 cells after prolonged exposure and that its subsequent knockdown decreases the viability of these cells and increases caspase-3 activation and PARP proteolysis in these cells following cisplatin treatment.ConclusionsFrom these results we conclude that HPIP expression is associated with high-grade ovarian tumors and may promote their migration, invasion and EMT, a process that is associated with metastasis. In addition, we conclude that HPIP may serve as a potential therapeutic target for cisplatin resistant ovarian tumors.


Molecular Biology Reports | 2009

mRNA secondary structure modulates the translation of organophosphate hydrolase (OPH) in E. coli

Jay Prakash Pandey; Purushotham Gorla; Bramanandam Manavathi; Dayananda Siddavattam

Organophosphate hydrolases (OPHs), involved in hydrolytic cleavage of structurally diverse organophosphates are coded by a plasmid borne, highly conserved organophosphate degrading (opd) gene. An inverted repeat sequence found in the signal coding region of the opd gene was found to be responsible for inducing a stable stem loop structure with a ΔG of −23.1xa0kcal/mol. This stem loop structure has shown significant influence on the expression levels of organophosphate hydrolase (OPH) in E.xa0coli. When the signal coding region comprising the inverted repeat sequence was deleted a ∼3.28 fold increase in the expression levels of OPH was noticed in E.xa0coli BL21 cells. Mutations in the inverted repeat region, especially at the third position of the codon, to a non-complementary base destabilized the secondary structure of opd mRNA. When such opd variant, opd′ was expressed, the expression levels were found to be similar to expression levels coded by the construct generated by deleting the signal peptide coding region. Deletion of signal peptide did not influence the folding and activity of OPH. Though high level induction has resulted in accumulation of OPH as inclusion bodies, modulation of expression levels by reducing the copy number of the expression plasmid, inducer concentration and growth temperature has produced majority of the protein in soluble and active form.


Biochemical Journal | 2016

A transcriptional repressive role for epithelial-specific ETS factor ELF3 on estrogen receptor-alpha in breast cancer cells

Vijaya Narasihma Reddy Gajulapalli; Venkata Subramanyam Kumar Samanthapudi; Madhusudana Pulaganti; Saratchandra Singh Khumukcham; Vijaya Lakhsmi Malisetty; Lalitha Guruprasad; Suresh Kumar Chitta; Bramanandam Manavathi

Oestrogen receptor-α (ERα) is a ligand-dependent transcription factor that primarily mediates oestrogen (E2)-dependent gene transcription required for mammary gland development. Coregulators critically regulate ERα transcription functions by directly interacting with it. In the present study, we report that ELF3, an epithelial-specific ETS transcription factor, acts as a transcriptional repressor of ERα. Co-immunoprecipitation (Co-IP) analysis demonstrated that ELF3 strongly binds to ERα in the absence of E2, but ELF3 dissociation occurs upon E2 treatment in a dose- and time-dependent manner suggesting that E2 negatively influences such interaction. Domain mapping studies further revealed that the ETS (E-twenty six) domain of ELF3 interacts with the DNA binding domain of ERα. Accordingly, ELF3 inhibited ERαs DNA binding activity by preventing receptor dimerization, partly explaining the mechanism by which ELF3 represses ERα transcriptional activity. Ectopic expression of ELF3 decreases ERα transcriptional activity as demonstrated by oestrogen response elements (ERE)-luciferase reporter assay or by endogenous ERα target genes. Conversely ELF3 knockdown increases ERα transcriptional activity. Consistent with these results, ELF3 ectopic expression decreases E2-dependent MCF7 cell proliferation whereas ELF3 knockdown increases it. We also found that E2 induces ELF3 expression in MCF7 cells suggesting a negative feedback regulation of ERα signalling in breast cancer cells. A small peptide sequence of ELF3 derived through functional interaction between ERα and ELF3 could inhibit DNA binding activity of ERα and breast cancer cell growth. These findings demonstrate that ELF3 is a novel transcriptional repressor of ERα in breast cancer cells. Peptide interaction studies further represent a novel therapeutic option in breast cancer therapy.


Materials Science and Engineering: C | 2017

Cytocompatibility studies of titania-doped calcium borosilicate bioactive glasses in-vitro

Rajkumar Samudrala; Abdul Azeem P; Vasudevarao Penugurti; Bramanandam Manavathi

The present study aims to elucidate the applications of Titania (TiO2) doped calcium borosilicate glass as a biocompatible material in regenerative orthopedic applications. In this context, we have examined the bioactivity of various concentrations of TiO2 doped glasses with the help of simulated body fluid (SBF). Cytocompatibility, cell proliferation, and protein expression studies revealed the potential candidature of TiO2 doped glasses on osteoblast cell lines (MG-63). We hypothesized that TiO2 doped calcium borosilicate glasses are most cytocompatible material for bone implants. Glasses with composition 31B2O3-20SiO2-24.5Na2O-(24.5-x) CaO- x TiO2 (x=0,0.5,1,2) have been prepared by the conventional melt-quenching technique. After immersion of glasses in the SBF, formation of hydroxyapatite layer on the surface was confirmed by X-ray Diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) analysis. Significant change in the pH of the body fluid was observed with the addition of titania. Degradation test was performed as per the ISO 10993. The results showed that partial substitution of TiO2 with CaO negatively influenced bioactivity; it decreased with increase in concentration of TiO2. Vickers hardness tester was used to measure the microhardness values of the prepared glasses. With the increasing of TiO2 content, the microhardness of the glass samples was increased from 545Hv to 576Hv. Cytocompatibility has been evaluated with MG-63 cells by using MTT assay. Further, we observed that there was no change in expressions of cyclin levels even after the incorporation of titania. The antibacterial properties were examined against E. coli and S. aureus. Strong antibacterial efficacy was observed for 2% TiO2 in the system. Hence it can be concluded that titania-doped borosilicate glasses may be used as potential materials in bone tissue engineering.


Bioscience Reports | 2016

Oestrogen receptor negativity in breast cancer: a cause or consequence?

Vijaya Narasihma Reddy Gajulapalli; Vijaya Lakshmi Malisetty; Suresh Kumar Chitta; Bramanandam Manavathi

Endocrine resistance, which occurs either by de novo or acquired route, is posing a major challenge in treating hormone-dependent breast cancers by endocrine therapies. The loss of oestrogen receptor α (ERα) expression is the vital cause of establishing endocrine resistance in this subtype. Understanding the mechanisms that determine the causes of this phenomenon are therefore essential to reduce the disease efficacy. But how we negate oestrogen receptor (ER) negativity and endocrine resistance in breast cancer is questionable. To answer that, two important approaches are considered: (1) understanding the cellular origin of heterogeneity and ER negativity in breast cancers and (2) characterization of molecular regulators of endocrine resistance. Breast tumours are heterogeneous in nature, having distinct molecular, cellular, histological and clinical behaviour. Recent advancements in perception of the heterogeneity of breast cancer revealed that the origin of a particular mammary tumour phenotype depends on the interactions between the cell of origin and driver genetic hits. On the other hand, histone deacetylases (HDACs), DNA methyltransferases (DNMTs), miRNAs and ubiquitin ligases emerged as vital molecular regulators of ER negativity in breast cancers. Restoring response to endocrine therapy through re-expression of ERα by modulating the expression of these molecular regulators is therefore considered as a relevant concept that can be implemented in treating ER-negative breast cancers. In this review, we will thoroughly discuss the underlying mechanisms for the loss of ERα expression and provide the future prospects for implementing the strategies to negate ER negativity in breast cancers.


3 Biotech | 2016

Isolation and biological evaluation of N-(4-aminocyclooctyl)-3, 5-dinitrobenzamide, a new semisynthetic derivative from the Mangrove-associated actinomycete Pseudonocardia endophytica VUK-10

Usha Kiranmayi Mangamuri; Muvva Vijayalakshmi; Sudhakar Poda; Bramanandam Manavathi; Bhujangarao Chitturi; Venkateswarlu Yenamandra

Abstract The present study was aimed to isolate novel bioactive compounds from actinomycetes species isolated from mangrove habitats. With this connection, Pseudonocardia endophytica (VUK-10) was isolated using dilution plate technique and was examined for its secondary metabolite profiling. After successive purification and spectroscopic characterization viz., FTIR, mass, NMR, DEPT, HMQC, HMBC, and COSY spectroscopy, two compounds were identified including a semi synthetic derivative N-(4-aminocyclooctyl)-3, 5-dinitrobenzamide (1), obtained from the precursor of novel natural product cyclooctane-1,4-diamine (3), along with a known compound 3-((1H-indol-6-yl) methyl) hexahydropyrrolo [1, 2-a] pyrazine-1, 4-dione (2). Anti cancer activities of the characterized compounds against in vitro cancerous cell line models, MDA-MB-231, OAW-42, HeLa, and MCF-7 reveal that HELA cells are most susceptible (IC50-10xa0nM compound 1 and 2) followed by other studied cells. On the other hand, antibacterial and antifungal activities of the studied compounds against tested pathogens revealed that there is a significant antimicrobial activity with all the tested bacterial and fungal species. Moreover, compound 1 showed the lowest MIC values against Streptococcus mutans as 4xa0 and 16xa0µg/ml for Candida albicans. In conclusion, the identified novel chemical compounds in the present study may have a potential application in anticancer therapy as well as to mitigate the bacterial and fungal pathogens thus to control the infectious diseases.


PLOS Biology | 2018

Amino acid starvation sensing dampens IL-1β production by activating riboclustering and autophagy

Srikanth Battu; Sumbul Afroz; Jeevan Giddaluru; Saima Naz; Weishan Huang; Saratchandra Singh Khumukcham; Rafiq Ahmad Khan; Saleem Yousuf Bhat; Insaf A. Qureshi; Bramanandam Manavathi; Aleem Ahmed Khan; Avery August; Seyed E. Hasnain; Nooruddin Khan

Activation of the amino acid starvation response (AAR) increases lifespan and acute stress resistance as well as regulates inflammation. However, the underlying mechanisms remain unclear. Here, we show that activation of AAR pharmacologically by Halofuginone (HF) significantly inhibits production of the proinflammatory cytokine interleukin 1β (IL-1β) and provides protection from intestinal inflammation in mice. HF inhibits IL-1β through general control nonderepressible 2 kinase (GCN2)–dependent activation of the cytoprotective integrated stress response (ISR) pathway, resulting in rerouting of IL-1β mRNA from translationally active polysomes to inactive ribocluster complexes—such as stress granules (SGs)—via recruitment of RNA-binding proteins (RBPs) T cell–restricted intracellular antigen-1(TIA-1)/TIA-1–related (TIAR), which are further cleared through induction of autophagy. GCN2 ablation resulted in reduced autophagy and SG formation, which is inversely correlated with IL-1β production. Furthermore, HF diminishes inflammasome activation through suppression of reactive oxygen species (ROS) production. Our study unveils a novel mechanism by which IL-1β is regulated by AAR and further suggests that administration of HF might offer an effective therapeutic intervention against inflammatory diseases.

Collaboration


Dive into the Bramanandam Manavathi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suresh Kumar Chitta

Sri Krishnadevaraya University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajkumar Samudrala

National Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sudhakar Poda

Acharya Nagarjuna University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge