Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brande S. Williams is active.

Publication


Featured researches published by Brande S. Williams.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Extracellular loop C of NPC1L1 is important for binding to ezetimibe

Adam B. Weinglass; Martin Köhler; Uwe Schulte; Jessica Liu; Emmanuel O. Nketiah; Anu Thomas; William A. Schmalhofer; Brande S. Williams; Wolfgang Bildl; Daniel R. McMasters; Kevin Dai; Lindsey Beers; Margaret E. McCann; Gregory J. Kaczorowski; Maria L. Garcia

Niemann–Pick C1-like protein (NPC1L1) mediates the absorption of dietary cholesterol in the proximal region of the intestine, a process that is blocked by cholesterol absorption inhibitors (CAIs), including ezetimibe (EZE). Using a proteomic approach, we demonstrate that NPC1L1 is the protein to which EZE and its analogs bind. Next, we determined the site of interaction of EZE analogs with NPC1L1 by exploiting the different binding affinities of mouse and dog NPC1L1 for the radioligand analog of EZE, [3H]AS. Chimeric and mutational studies indicate that high-affinity binding of [3H]AS to dog NPC1L1 depends on molecular determinants present in a 61-aa region of a large extracellular domain (loop C), where Phe-532 and Met-543 appear to be key contributors. These data suggest that the [3H]AS-binding site resides in the intestinal lumen and are consistent with preclinical data demonstrating in vivo efficacy of a minimally bioavailable CAI. Furthermore, these determinants of [3H]AS binding lie immediately adjacent to a hotspot of human NPC1L1 polymorphisms correlated with hypoabsorption of cholesterol. These observations, taken together with the recently described binding of cholesterol to the N terminus (loop A) of the close NPC1L1 homologue, NPC1, may provide a molecular basis for understanding EZE inhibition of NPC1L1-mediated cholesterol absorption. Specifically, EZE binding to an extracellular site distinct from where cholesterol binds prevents conformational changes in NPC1L1 that are necessary for the translocation of cholesterol across the membrane.


Journal of Pharmacology and Experimental Therapeutics | 2010

Analgesic Effects of a Substituted N-Triazole Oxindole (TROX-1), a State-Dependent, Voltage-Gated Calcium Channel 2 Blocker

Catherine Abbadie; Owen B. McManus; Shu-Yu Sun; Randal M. Bugianesi; Ge Dai; Rodolfo J. Haedo; James B Herrington; Gregory J. Kaczorowski; McHardy M. Smith; Andrew M. Swensen; Vivien A. Warren; Brande S. Williams; Stephen P. Arneric; Cyrus Eduljee; Terrance P. Snutch; Elizabeth W. Tringham; Nina Jochnowitz; Annie Liang; D. Euan MacIntyre; Erin McGowan; Shruti Mistry; Valerie V. White; Scott B. Hoyt; Clare London; Kathryn A. Lyons; Patricia B. Bunting; Sylvia Volksdorf; Joseph L. Duffy

Voltage-gated calcium channel (Cav)2.2 (N-type calcium channels) are key components in nociceptive transmission pathways. Ziconotide, a state-independent peptide inhibitor of Cav2.2 channels, is efficacious in treating refractory pain but exhibits a narrow therapeutic window and must be administered intrathecally. We have discovered an N-triazole oxindole, (3R)-5-(3-chloro-4-fluorophenyl)-3-methyl-3-(pyrimidin-5-ylmethyl)-1-(1H-1,2,4-triazol-3-yl)-1,3-dihydro-2H-indol-2-one (TROX-1), as a small-molecule, state-dependent blocker of Cav2 channels, and we investigated the therapeutic advantages of this compound for analgesia. TROX-1 preferentially inhibited potassium-triggered calcium influx through recombinant Cav2.2 channels under depolarized conditions (IC50 = 0.27 μM) compared with hyperpolarized conditions (IC50 > 20 μM). In rat dorsal root ganglion (DRG) neurons, TROX-1 inhibited ω-conotoxin GVIA-sensitive calcium currents (Cav2.2 channel currents), with greater potency under depolarized conditions (IC50 = 0.4 μM) than under hyperpolarized conditions (IC50 = 2.6 μM), indicating state-dependent Cav2.2 channel block of native as well as recombinant channels. TROX-1 fully blocked calcium influx mediated by a mixture of Cav2 channels in calcium imaging experiments in rat DRG neurons, indicating additional block of all Cav2 family channels. TROX-1 reversed inflammatory-induced hyperalgesia with maximal effects equivalent to nonsteroidal anti-inflammatory drugs, and it reversed nerve injury-induced allodynia to the same extent as pregabalin and duloxetine. In contrast, no significant reversal of hyperalgesia was observed in Cav2.2 gene-deleted mice. Mild impairment of motor function in the Rotarod test and cardiovascular functions were observed at 20- to 40-fold higher plasma concentrations than required for analgesic activities. TROX-1 demonstrates that an orally available state-dependent Cav2 channel blocker may achieve a therapeutic window suitable for the treatment of chronic pain.


Assay and Drug Development Technologies | 2004

Functional assay of voltage-gated sodium channels using membrane potential-sensitive dyes.

John P. Felix; Brande S. Williams; Birgit T. Priest; Richard M. Brochu; Ivy E. Dick; Vivien A. Warren; Lizhen Yan; Robert S. Slaughter; Gregory J. Kaczorowski; McHardy M. Smith; Maria L. Garcia

The discovery of novel therapeutic agents that act on voltage-gated sodium channels requires the establishment of high-capacity screening assays that can reliably measure the activity of these proteins. Fluorescence resonance energy transfer (FRET) technology using membrane potential-sensitive dyes has been shown to provide a readout of voltage-gated sodium channel activity in stably transfected cell lines. Due to the inherent rapid inactivation of sodium channels, these assays require the presence of a channel activator to prolong channel opening. Because sodium channel activators and test compounds may share related binding sites on the protein, the assay protocol is critical for the proper identification of channel inhibitors. In this study, high throughput, functional assays for the voltage-gated sodium channels, hNa(V)1.5 and hNa(V)1.7, are described. In these assays, channels stably expressed in HEK cells are preincubated with test compound in physiological medium and then exposed to a sodium channel activator that slows channel inactivation. Sodium ion movement through open channels causes membrane depolarization that can be measured with a FRET dye membrane potential-sensing system, providing a large and reproducible signal. Unlike previous assays, the signal obtained in the agonist initiation assay is sensitive to all sodium channel modulators that were tested and can be used in high throughput mode, as well as in support of Medicinal Chemistry efforts for lead optimization.


Bioorganic & Medicinal Chemistry Letters | 2008

Imidazopyridines: a novel class of hNav1.7 channel blockers.

Clare London; Scott B. Hoyt; William H. Parsons; Brande S. Williams; Vivien A. Warren; Richard Tschirret-Guth; McHardy M. Smith; Birgit T. Priest; Erin McGowan; William J. Martin; Kathryn A. Lyons; Xiaohua Li; Bindhu V. Karanam; Nina Jochnowitz; Maria L. Garcia; John P. Felix; Brian Dean; Catherine Abbadie; Gregory J. Kaczorowski; Joseph L. Duffy

A series of imidazopyridines were evaluated as potential sodium channel blockers for the treatment of neuropathic pain. Several members were identified with good hNa(v)1.7 potency and excellent rat pharmacokinetic profiles. Compound 4 had good efficacy (52% and 41% reversal of allodynia at 2 and 4h post-dose, respectively) in the Chung rat spinal nerve ligation (SNL) model of neuropathic pain when dosed orally at 10mg/kg.


Bioorganic & Medicinal Chemistry Letters | 2011

A potent and selective indole N-type calcium channel (Cav2.2) blocker for the treatment of pain

Sriram Tyagarajan; Prasun K. Chakravarty; Min Park; Bishan Zhou; James B Herrington; Kevin S. Ratliff; Randall M. Bugianesi; Brande S. Williams; Rodolfo J. Haedo; Andrew M. Swensen; Vivien A. Warren; McHardy M. Smith; Maria L. Garcia; Gregory J. Kaczorowski; Owen B. McManus; Kathryn A. Lyons; Xiaohua Li; Maria Madeira; Bindhu V. Karanam; Mitchell D. Green; Michael J. Forrest; Catherine Abbadie; Erin McGowan; Shruti Mistry; Nina Jochnowitz; Joseph L. Duffy

N-type calcium channels (Ca(v)2.2) have been shown to play a critical role in pain. A series of low molecular weight 2-aryl indoles were identified as potent Ca(v)2.2 blockers with good in vitro and in vivo potency.


Molecular Pharmacology | 2008

Madin-Darby Canine Kidney II Cells: A Pharmacologically Validated System for NPC1L1-Mediated Cholesterol Uptake

Adam Weinglass; Martin Köhler; Emmanuel O. Nketiah; Jessica Liu; William A. Schmalhofer; Anu Thomas; Brande S. Williams; Lindsey Beers; Lauren Smith; Mike Hafey; Kelly Bleasby; Joseph F. Leone; Yui Sing Tang; Matthew P. Braun; Feroze Ujjainwalla; Margaret E. McCann; Gregory J. Kaczorowski; Maria L. Garcia

Absorption of dietary cholesterol in the proximal region of the intestine is mediated by Niemann-Pick C1-like protein (NPC1L1) and is sensitive to the cholesterol absorption inhibitor ezetimibe (EZE). Although a correlation exists between EZE binding to NPC1L1 in vitro and efficacy in vivo, the precise nature of interaction(s) between NPC1L1, EZE, and cholesterol remain unclear. Here, we analyze the direct relationship between EZE analog binding to NPC1L1 and its influence on cholesterol influx in a novel in vitro system. Using the EZE analog [3H]AS, an assay that quantitatively measures the expression of NPC1L1 on the cell surface has been developed. It is noteworthy that whereas two cell lines (CaCo-2 and HepG2) commonly used for studying NPC1L1-dependent processes express almost undetectable levels of NPC1L1 at the cell surface, polarized Madin-Darby canine kidney (MDCKII) cells endogenously express 4 × 105 [3H]AS sites/cell under basal conditions. Depleting endogenous cholesterol with the HMG CoA reductase inhibitor lovastatin leads to a 2-fold increase in the surface expression of NPC1L1, supporting the contention that MDCKII cells respond to changes in cholesterol homeostasis by up-regulating a pathway for cholesterol influx. However, a significant increase in surface expression levels of NPC1L1 is necessary to characterize a pharmacologically sensitive, EZE-dependent pathway of cholesterol uptake in these cells. Remarkably, the affinity of EZE analogs for binding to NPC1L1 is almost identical to the IC50 blocking cholesterol flux through NPC1L1 in MDCKII cells. From a mechanistic standpoint, these observations support the contention that EZE analogs and cholesterol share the same/overlapping binding site(s) or are tightly coupled through allosteric interactions.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of a novel class of biphenyl pyrazole sodium channel blockers for treatment of neuropathic pain.

Sriram Tyagarajan; Prasun K. Chakravarty; Bishan Zhou; Brett Taylor; Ronsar Eid; Michael H. Fisher; William H. Parsons; Mathew J. Wyvratt; Kathryn A. Lyons; Tracy Klatt; Xiaohua Li; Sanjeev Kumar; Brande S. Williams; John P. Felix; Birgit T. Priest; Richard M. Brochu; Vivien A. Warren; McHardy M. Smith; Maria L. Garcia; Gregory J. Kaczorowski; William J. Martin; Catherine Abbadie; Erin McGowan; Nina Jochnowitz; Ann E. Weber; Joseph L. Duffy

A series of novel biphenyl pyrazole dicarboxamides were identified as potential sodium channel blockers for treatment of neuropathic pain. Compound 20 had outstanding efficacy in the Chung rat spinal nerve ligation (SNL) model of neuropathic pain.


Bioorganic & Medicinal Chemistry Letters | 2010

Substituted biaryl oxazoles, imidazoles, and thiazoles as sodium channel blockers.

Sriram Tyagarajan; Prasun K. Chakravarty; Bishan Zhou; Michael H. Fisher; Mathew J. Wyvratt; Kathy Lyons; Tracy Klatt; Xiaohua Li; Sanjeev Kumar; Brande S. Williams; John P. Felix; Birgit T. Priest; Richard M. Brochu; Vivien A. Warren; McHardy M. Smith; Maria L. Garcia; Gregory J. Kaczorowski; William J. Martin; Catherine Abbadie; Erin McGowan; Nina Jochnowitz; William H. Parsons

Voltage-gated sodium channels have been shown to play a critical role in neuropathic pain. With a goal to develop potent peripherally active sodium channel blockers, a series of low molecular weight biaryl substituted imidazoles, oxazoles, and thiazole carboxamides were identified with good in vitro and in vivo potency.


Bioorganic & Medicinal Chemistry | 2012

Asymmetric synthesis and evaluation of a hydroxyphenylamide voltage-gated sodium channel blocker in human prostate cancer xenografts

Gary C. Davis; Yali Kong; Mikell Paige; Zhang Li; Ellen C. Merrick; Todd P. Hansen; Simeng Suy; Kan Wang; Sivanesan Dakshanamurthy; Antoinette Cordova; Owen B. McManus; Brande S. Williams; Maksymilian Chruszcz; Wladek Minor; Manoj K. Patel; Milton L. Brown

Voltage-gated sodium channels are known to be expressed in neurons and other excitable cells. Recently, voltage-gated sodium channels have been found to be expressed in human prostate cancer cells. α-Hydroxy-α-phenylamides are a new class of small molecules that have demonstrated potent inhibition of voltage-gated sodium channels. The hydroxyamide motif, an isostere of a hydantoin ring, provides an active scaffold from which several potent racemic sodium channel blockers have been derived. With little known about chiral preferences, the development of chiral syntheses to obtain each pure enantiomer for evaluation as sodium channel blockers is important. Using Seebach and Fraters chiral template, cyclocondensation of (R)-3-chloromandelic acid with pivaldehyde furnished both the cis- and trans-2,5-disubsituted dioxolanones. Using this chiral template, we synthesized both enantiomers of 2-(3-chlorophenyl)-2-hydroxynonanamide, and evaluated their ability to functionally inhibit hNa(v) isoforms, human prostate cancer cells and xenograft. Enantiomers of lead demonstrated significant ability to reduce prostate cancer in vivo.


Bioorganic & Medicinal Chemistry Letters | 2010

Substituted biaryl pyrazoles as sodium channel blockers.

Sriram Tyagarajan; Prasun K. Chakravarty; Bishan Zhou; Brett Taylor; Michael H. Fisher; Mathew J. Wyvratt; Kathy Lyons; Tracy Klatt; Xiaohua Li; Sanjeev Kumar; Brande S. Williams; John P. Felix; Birgit T. Priest; Richard M. Brochu; Vivien A. Warren; McHardy M. Smith; Maria L. Garcia; Gregory J. Kaczorowski; William J. Martin; Catherine Abbadie; Erin McGowan; Nina Jochnowitz; William H. Parsons

Voltage-gated sodium channels have been shown to play a critical role in neuropathic pain. A series of low molecular weight biaryl substituted pyrazole carboxamides were identified with good in-vitro potency and in-vivo efficacy. Compound 26, a Nav1.7 blocker has excellent efficacy in the Chung model of neuropathic pain.

Collaboration


Dive into the Brande S. Williams's collaboration.

Researchain Logo
Decentralizing Knowledge