Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brandon Carney is active.

Publication


Featured researches published by Brandon Carney.


The Journal of Nuclear Medicine | 2017

Molecular Imaging of PARP

Thomas Reiner; Brandon Carney; Susanne Kossatz

The poly(adenosine diphosphate–ribose)polymerase (PARP) family of enzymes is an important factor in the cellular DNA damage response and has gained much attention for its role in many diseases, particularly cancer. Targeted molecular imaging of PARP using fluorescent or radiolabeled tags has followed on the success of therapeutic inhibitors and gained momentum over the past few years. This review covers PARP imaging from the very first imaging agents up to the current state of the technology, with a focus on the clinical applications made possible by these agents.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Targeted PET imaging strategy to differentiate malignant from inflamed lymph nodes in diffuse large B-cell lymphoma

Jun Tang; Darin Salloum; Brandon Carney; Christian Brand; Susanne Kossatz; Ahmad Sadique; Jason S. Lewis; Wolfgang A. Weber; Hans-Guido Wendel; Thomas Reiner

Significance Diffuse large B-cell lymphoma (DLBCL) is the most common adult lymphoma, accounting for 37% of all non-Hodgkin lymphoma cases in the United States. Despite an approximate 50% cure rate, refractory or relapsed cases have a poor prognosis and require timely medical interventions. Therefore, accurate diagnostic methods play a pivotal role in managing DLBCL. 18F- fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging, the current standard imaging modality for diagnosing DLBCL, often fails to differentiate inflamed from malignant lymph nodes in patients with DLBCL. To address this urgent medical need, we have developed a targeted PET imaging method that accurately distinguishes malignancy from inflammation in the lymph nodes. Our targeted PET imaging approach could play an essential role in the clinical development of therapies that induce significant inflammation in DLBCL. Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. DLBCL exhibits highly aggressive and systemic progression into multiple tissues in patients, particularly in lymph nodes. Whole-body 18F-fluodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging has an essential role in diagnosing DLBCL in the clinic; however, [18F]FDG-PET often faces difficulty in differentiating malignant tissues from certain nonmalignant tissues with high glucose uptake. We have developed a PET imaging strategy for DLBCL that targets poly[ADP ribose] polymerase 1 (PARP1), the expression of which has been found to be much higher in DLBCL than in healthy tissues. In a syngeneic DLBCL mouse model, this PARP1-targeted PET imaging approach allowed us to discriminate between malignant and inflamed lymph nodes, whereas [18F]FDG-PET failed to do so. Our PARP1-targeted PET imaging approach may be an attractive addition to the current PET imaging strategy to differentiate inflammation from malignancy in DLBCL.


EJNMMI research | 2015

Development of a clickable bimodal fluorescent/PET probe for in vivo imaging

Andreas Paulus; Pooja Desai; Brandon Carney; Giuseppe Carlucci; Thomas Reiner; Christian Brand; Wolfgang A. Weber

BackgroundFluorescent imaging agents are becoming evermore important in preclinical and clinical research. They do, however, suffer from poor tissue penetration, which makes optical fluorescence imaging incompatible with whole-body imaging techniques. The design of novel bimodal PET active and fluorescent tracers could therefore combine the benefits of optical imaging with radioactively labeled imaging probes. Herein, we report the synthesis and evaluation of a clickable 18F-labeled fluorescent dye.MethodsAn azide-modified BODIPY-Fl dye could be successfully radio-labeled with 18F using an 18F/19F exchange reaction of the boron-fluoride core of the BODIPY dye to yield a clickable bimodal PET/fluorescent imaging tool. In vitro as well as in vivo imaging (PET/fluorescence) using a bombesin analog was conducted to study the applicability of the dual-modality imaging probe.ResultsWe use the radio-labeled small molecule, 18F-BODIPY-azide to label site-specifically different targeted peptides, based on a standard modular labeling protocol. Following the synthesis of a bimodal bombesin analog, we determine the peptide tracer’s performance in vitro and in vivo, exploring both the optical as well as PET imaging capabilities.ConclusionThis versatile methodology has the potential to have a transformational impact on 18F radiotracer synthesis, opening the door for rapid screening of novel-labeled peptide tracers, both on the cellular (optical) as well as whole-body (PET) level.


Cancer Research | 2017

Biomarker based PET Imaging of Diffuse Intrinsic Pontine Glioma in Mouse Models.

Susanne Kossatz; Brandon Carney; Melanie Schweitzer; Giuseppe Carlucci; Vesselin Z. Miloushev; Uday Bhanu Maachani; Prajwal Rajappa; Kayvan R. Keshari; David Pisapia; Wolfgang A. Weber; Mark M. Souweidane; Thomas Reiner

Diffuse intrinsic pontine glioma (DIPG) is a childhood brainstem tumor with a universally poor prognosis. Here, we characterize a positron emission tomography (PET) probe for imaging DIPG in vivo In human histological tissues, the probes target, PARP1, was highly expressed in DIPG compared to normal brain. PET imaging allowed for the sensitive detection of DIPG in a genetically engineered mouse model, and probe uptake correlated to histologically determined tumor infiltration. Imaging with the sister fluorescence agent revealed that uptake was confined to proliferating, PARP1-expressing cells. Comparison with other imaging technologies revealed remarkable accuracy of our biomarker approach. We subsequently demonstrated that serial imaging of DIPG in mouse models enables monitoring of tumor growth, as shown in modeling of tumor progression. Overall, this validated method for quantifying DIPG burden would serve useful in monitoring treatment response in early phase clinical trials. Cancer Res; 77(8); 2112-23. ©2017 AACR.


Nuclear Medicine and Biology | 2017

Evaluation of [18F]-ATRi as PET tracer for in vivo imaging of ATR in mouse models of brain cancer☆

Giuseppe Carlucci; Brandon Carney; Ahmad Sadique; Axel Vansteene; Jun Tang; Thomas Reiner

RATIONALE Ataxia telangiectasia and Rad3-related (ATR) threonine serine kinase is one of the key elements in orchestrating the DNA damage response (DDR). As such, inhibition of ATR can amplify the effects of chemo- and radiation-therapy, and several ATR inhibitors (ATRi) have already undergone clinical testing in cancer. For more accurate patient selection, monitoring and staging, real-time in vivo imaging of ATR could be invaluable; the development of appropriate imaging agents has remained a major challenge. METHODS 3-amino-N-(4-[18F]phenyl)-6-(4-(methylsulfonyl)phenyl)pyrazine-2-carboxamide ([18F]-ATRi), a close analogue of Ve-821, (a clinical ATRi candidate), was readily accomplished similarly to already established synthetic procedures. Structurally, 18F was introduced at the 4-position of the aromatic ring of Ve-821 for generating a labeled ATR inhibitor. In vitro experiments were conducted in U251 MG glioblastoma cell lines and ex vivo biodistribution were performed in subcutaneous U251 MG xenograft bearing athymic nude mice following microPET imaging. RESULTS [18F]-ATRi has a similar pharmacokinetic profile to that of Ve-821. Using an U251 MG glioblastoma mouse model, we evaluated the in vivo binding efficiency of [18F]-ATRi. Blood and tumor showed a statistically significant difference between mice injected with only the probe or following blocking experiment with Ve-821 (1.48±0.40%ID/g vs. 0.46±0.12%ID/g in tumor and 1.85±0.47%ID/g vs. 0.84±0.3%ID/g in blood respectively). CONCLUSIONS [18F]-ATRi represents the first 18F positron emission tomography (PET) ATR imaging agent, and is designed on a low nanomolar and clinically relevant ATR inhibitor.


ChemMedChem | 2016

Near‐Infrared Intraoperative Chemiluminescence Imaging

Gabriel E. Büchel; Brandon Carney; Travis M. Shaffer; Jun Tang; Christine Austin; Manish Arora; Brian M. Zeglis; Jan Grimm; Jörg Eppinger; Thomas Reiner

Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near‐infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9 pmol cm−2 of the transition‐metal‐based ICI agent. As a proof of concept, we use ICI for the in vivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal‐to‐noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies.


The Journal of Nuclear Medicine | 2018

Direct Imaging of Drug Distribution and Target Engagement of the PARP Inhibitor Rucaparib

Susanne Kossatz; Brandon Carney; Christopher Farley; Wolfgang A. Weber; Charles Michael Drain; Thomas Reiner

Poly(ADP-ribose)polymerase (PARP) inhibitors have emerged as potent antitumor drugs. Here, we describe the intrinsic fluorescence properties of the clinically approved PARP inhibitor rucaparib and its potential to directly measure drug distribution and target engagement—a critical factor for understanding drug action and improving efficacy. Methods: We characterized the photophysical properties of rucaparib and determined its quantum yield and lifetime. Using confocal microscopy and flow cytometry, we imaged the intracellular distribution of rucaparib and measured uptake and release kinetics. Results: Rucaparib has an excitation/emission maximum of 355/480 nm and a quantum yield of 0.3. In vitro time-lapse imaging showed accumulation in cell nuclei within seconds of administration. Nuclear rucaparib uptake increased with higher PARP1 expression, and we determined an intracellular half-life of 6.4 h. Conclusion: The label-free, intrinsic fluorescence of rucaparib can be exploited to interrogate drug distribution and target binding, critical factors toward improving treatment efficacy and outcome.


The Journal of Nuclear Medicine | 2018

PARP-1–Targeted Radiotherapy in Mouse Models of Glioblastoma

Stephen A. Jannetti; Giuseppe Carlucci; Brandon Carney; Susanne Kossatz; Larissa Shenker; Lukas M. Carter; Beatriz Salinas; Christian Brand; Ahmad Sadique; Patrick L. Donabedian; Kristen M. Cunanan; Mithat Gonen; Vladimir Ponomarev; Brian M. Zeglis; Mark M. Souweidane; Jason S. Lewis; Wolfgang A. Weber; John L. Humm; Thomas Reiner

The DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is overexpressed in glioblastoma, with overall low expression in healthy brain tissue. Paired with the availability of specific small molecule inhibitors, PARP-1 is a near-ideal target to develop novel radiotherapeutics to induce DNA damage and apoptosis in cancer cells, while sparing healthy brain tissue. Methods: We synthesized an 131I-labeled PARP-1 therapeutic and investigated its pharmacology in vitro and in vivo. A subcutaneous tumor model was used to quantify retention times and therapeutic efficacy. A potential clinical scenario, intratumoral convection-enhanced delivery, was mimicked using an orthotopic glioblastoma model combined with an implanted osmotic pump system to study local administration of 131I-PARPi (PARPi is PARP inhibitor). Results: 131I-PARPi is a 1(2H)-phthalazinone, similar in structure to the Food and Drug Administration–approved PARP inhibitor AZD-2281. In vitro studies have shown that 131I-PARPi and AZD-2281 share similar pharmacologic profiles. 131I-PARPi delivered 134.1 cGy/MBq intratumoral injected activity. Doses to nontarget tissues, including liver and kidney, were significantly lower. Radiation damage and cell death in treated tumors were shown by p53 activation in U87-MG cells transfected with a p53-bioluminescent reporter. Treated mice showed significantly longer survival than mice receiving vehicle (29 vs. 22 d, P < 0.005) in a subcutaneous model. Convection-enhanced delivery demonstrated efficient retention of 131I-PARPi in orthotopic brain tumors, while quickly clearing from healthy brain tissue. Conclusion: Our results demonstrate 131I-PARPi’s high potential as a therapeutic and highlight PARP’s relevance as a target for radionuclide therapy. Radiation plays an integral role in brain tumor therapy, and radiolabeled PARP therapeutics could ultimately lead to improvements in the standard of care.


EJNMMI research | 2018

Discriminating radiation injury from recurrent tumor with [ 18 F]PARPi and amino acid PET in mouse models

Patrick L. Donabedian; Susanne Kossatz; John A. Engelbach; Stephen A. Jannetti; Brandon Carney; Robert J. Young; Wolfgang A. Weber; Joel R. Garbow; Thomas Reiner

BackgroundRadiation injury can be indistinguishable from recurrent tumor on standard imaging. Current protocols for this differential diagnosis require one or more follow-up imaging studies, long dynamic acquisitions, or complex image post-processing; despite much research, the inability to confidently distinguish between these two entities continues to pose a significant dilemma for the treating clinician. Using mouse models of both glioblastoma and radiation necrosis, we tested the potential of poly(ADP-ribose) polymerase (PARP)-targeted PET imaging with [18F]PARPi to better discriminate radiation injury from tumor.ResultsIn mice with experimental radiation necrosis, lesion uptake on [18F]PARPi-PET was similar to contralateral uptake (1.02 ± 0.26 lesion/contralateral %IA/ccmax ratio), while [18F]FET-PET clearly delineated the contrast-enhancing region on MR (2.12 ± 0.16 lesion/contralateral %IA/ccmax ratio). In mice with focal intracranial U251 xenografts, tumor visualization on PARPi-PET was superior to FET-PET, and lesion-to-contralateral activity ratios (max/max, p = 0.034) were higher on PARPi-PET than on FET-PET.ConclusionsA murine model of radiation necrosis does not demonstrate [18F]PARPi avidity, and [18F]PARPi-PET is better than [18F]FET-PET in distinguishing radiation injury from brain tumor. [18F]PARPi-PET can be used for discrimination between recurrent tumor and radiation injury within a single, static imaging session, which may be of value to resolve a common dilemma in neuro-oncology.


Journal of Visualized Experiments | 2017

A Novel Technique for Generating and Observing Chemiluminescence in a Biological Setting

Gabriel E. Büchel; Brandon Carney; Jun Tang; Brian M. Zeglis; Jörg Eppinger; Thomas Reiner

Intraoperative imaging techniques have the potential to make surgical interventions safer and more effective; for these reasons, such techniques are quickly moving into the operating room. Here, we present a new approach that utilizes a technique not yet explored for intraoperative imaging: chemiluminescent imaging. This method employs a ruthenium-based chemiluminescent reporter along with a custom-built nebulizing system to produce ex vivo or in vivo images with high signal-to-noise ratios. The ruthenium-based reporter produces light following exposure to an aqueous oxidizing solution and re-reduction within the surrounding tissue. This method has allowed us to detect reporter concentrations as low as 6.9 pmol/cm2. In this work, we present a visual guide to our proof-of-concept in vivo studies involving subdermal and intravenous injections in mice. The results suggest that this technology is a promising candidate for further preclinical research and might ultimately become a useful tool in the operating room.

Collaboration


Dive into the Brandon Carney's collaboration.

Top Co-Authors

Avatar

Thomas Reiner

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Susanne Kossatz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Carlucci

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Christian Brand

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jun Tang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ahmad Sadique

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Brian M. Zeglis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jason S. Lewis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Axel Vansteene

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Beatriz Salinas

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge