Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brandon J. Bravo is active.

Publication


Featured researches published by Brandon J. Bravo.


Nature Chemical Biology | 2011

Specific Btk inhibition suppresses B cell– and myeloid cell–mediated arthritis

Julie Di Paolo; Tao Huang; Mercedesz Balazs; James Barbosa; Kai H. Barck; Brandon J. Bravo; Richard A. D. Carano; James W. Darrow; Douglas R. Davies; Laura DeForge; Lauri Diehl; Ronald E. Ferrando; Steven L. Gallion; Anthony M. Giannetti; Peter Gribling; Vincent Hurez; Sarah G. Hymowitz; Randall Jones; Jeffrey E. Kropf; Wyne P. Lee; Patricia Maciejewski; Scott Mitchell; Hong Rong; Bart L. Staker; J. Andrew Whitney; Sherry Yeh; Wendy B. Young; Christine Yu; Juan Zhang; Karin Reif

Brutons tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes FcγRIII-induced TNFα, IL-1β and IL-6 production. Accordingly, in myeloid- and FcγR-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.


Cancer Cell | 2014

Structure of the BRAF-MEK Complex Reveals a Kinase Activity Independent Role for BRAF in MAPK Signaling.

Jacob R. Haling; Jawahar Sudhamsu; Ivana Yen; Steve Sideris; Wendy Sandoval; Wilson Phung; Brandon J. Bravo; Anthony M. Giannetti; Ariana Peck; Alexandre Masselot; Tony Morales; Darin Smith; Barbara J. Brandhuber; Sarah G. Hymowitz; Shiva Malek

Numerous oncogenic mutations occur within the BRAF kinase domain (BRAF(KD)). Here we show that stable BRAF-MEK1 complexes are enriched in BRAF(WT) and KRAS mutant (MT) cells but not in BRAF(MT) cells. The crystal structure of the BRAF(KD) in a complex with MEK1 reveals a face-to-face dimer sensitive to MEK1 phosphorylation but insensitive to BRAF dimerization. Structure-guided studies reveal that oncogenic BRAF mutations function by bypassing the requirement for BRAF dimerization for activity or weakening the interaction with MEK1. Finally, we show that conformation-specific BRAF inhibitors can sequester a dormant BRAF-MEK1 complex resulting in pathway inhibition. Taken together, these findings reveal a regulatory role for BRAF in the MAPK pathway independent of its kinase activity but dependent on interaction with MEK.


Journal of Medicinal Chemistry | 2011

Identification, Characterization, and Implications of Species-Dependent Plasma Protein Binding for the Oral Hedgehog Pathway Inhibitor Vismodegib (GDC-0449)

Anthony M. Giannetti; Harvey Wong; Gerrit J. P. Dijkgraaf; Erin C. Dueber; Daniel F. Ortwine; Brandon J. Bravo; Stephen E. Gould; Emile Plise; Bert L. Lum; Vikram Malhi; Richard A. Graham

Vismodegib (GDC-0449) is is an orally available selective Hedgehog pathway inhibitor in development for cancer treatment. The drug is ≥95% protein bound in plasma at clinically relevant concentrations and has an approximately 200-fold longer single dose half-life in humans than rats. We have identified a strong linear relationship between plasma drug concentrations and α-1-acid glycoprotein (AAG) in a phase I study. Biophysical and cellular techniques have been used to reveal that vismodegib strongly binds to human AAG (K(D) = 13 μM) and binds albumin with lower affinity (K(D) = 120 μM). Additionally, binding to rat AAG is reduced ∼20-fold relative to human, whereas the binding affinity to rat and human albumin was similar. Molecular docking studies reveal the reason for the signficiant species dependence on binding. These data highlight the utility of biophysical techniques in creating a comprehensive picture of protein binding across species.


Journal of Medicinal Chemistry | 2014

Discovery of Selective 4-Amino-pyridopyrimidine Inhibitors of MAP4K4 Using Fragment-Based Lead Identification and Optimization.

Terry D. Crawford; Chudi Ndubaku; Huifen Chen; Jason Boggs; Brandon J. Bravo; Kelly DeLaTorre; Anthony M. Giannetti; Stephen E. Gould; Seth F. Harris; Steven Magnuson; Erin McNamara; Lesley J. Murray; Jim Nonomiya; Amy Sambrone; Stephen Schmidt; Tanya Smyczek; Mark S. Stanley; Philip Vitorino; Lan Wang; Kristina West; Ping Wu; Weilan Ye

Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) is a serine/threonine kinase implicated in the regulation of many biological processes. A fragment-based lead discovery approach was used to generate potent and selective MAP4K4 inhibitors. The fragment hit pursued in this article had excellent ligand efficiency (LE), an important attribute for subsequent successful optimization into drug-like lead compounds. The optimization efforts eventually led us to focus on the pyridopyrimidine series, from which 6-(2-fluoropyridin-4-yl)pyrido[3,2-d]pyrimidin-4-amine (29) was identified. This compound had low nanomolar potency, excellent kinase selectivity, and good in vivo exposure, and demonstrated in vivo pharmacodynamic effects in a human tumor xenograft model.


Journal of Medicinal Chemistry | 2013

Fragment-Based Identification of Amides Derived from trans-2-(Pyridin-3-yl)cyclopropanecarboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT)

Anthony M. Giannetti; Xiaozhang Zheng; Nicholas J. Skelton; Weiru Wang; Brandon J. Bravo; Kenneth W. Bair; Timm Baumeister; Eric Cheng; Lisa Crocker; Yezhen Feng; Janet Gunzner-Toste; Yen-Ching Ho; Rongbao Hua; Bianca M. Liederer; Yongbo Liu; Xiaolei Ma; Thomas O’Brien; Jason Oeh; Deepak Sampath; Youming Shen; Chengcheng Wang; Leslie Wang; Hongxing Wu; Yang Xiao; Po-wai Yuen; Mark Zak; Guiling Zhao; Qiang Zhao; Peter S. Dragovich

Potent, trans-2-(pyridin-3-yl)cyclopropanecarboxamide-containing inhibitors of the human nicotinamide phosphoribosyltransferase (NAMPT) enzyme were identified using fragment-based screening and structure-based design techniques. Multiple crystal structures were obtained of initial fragment leads, and this structural information was utilized to improve the biochemical and cell-based potency of the associated molecules. Many of the optimized compounds exhibited nanomolar antiproliferative activities against human tumor lines in in vitro cell culture experiments. In a key example, a fragment lead (13, KD = 51 μM) was elaborated into a potent NAMPT inhibitor (39, NAMPT IC50 = 0.0051 μM, A2780 cell culture IC50 = 0.000 49 μM) which demonstrated encouraging in vivo efficacy in an HT-1080 mouse xenograft tumor model.


PLOS ONE | 2012

Mechanistic and Structural Understanding of Uncompetitive Inhibitors of Caspase-6

Christopher E. Heise; Jeremy Murray; Katherine E. Augustyn; Brandon J. Bravo; Preeti Chugha; Frederick Cohen; Anthony M. Giannetti; Paul Gibbons; Rami N. Hannoush; Brian R. Hearn; Priyadarshini Jaishankar; Cuong Ly; Kinjalkumar Shah; Karen Stanger; Micah Steffek; Yinyan Tang; Xianrui Zhao; Joseph W. Lewcock; Adam R. Renslo; John A. Flygare; Michelle R. Arkin

Inhibition of caspase-6 is a potential therapeutic strategy for some neurodegenerative diseases, but it has been difficult to develop selective inhibitors against caspases. We report the discovery and characterization of a potent inhibitor of caspase-6 that acts by an uncompetitive binding mode that is an unprecedented mechanism of inhibition against this target class. Biochemical assays demonstrate that, while exquisitely selective for caspase-6 over caspase-3 and -7, the compound’s inhibitory activity is also dependent on the amino acid sequence and P1’ character of the peptide substrate. The crystal structure of the ternary complex of caspase-6, substrate-mimetic and an 11 nM inhibitor reveals the molecular basis of inhibition. The general strategy to develop uncompetitive inhibitors together with the unique mechanism described herein provides a rationale for engineering caspase selectivity.


Bioorganic & Medicinal Chemistry Letters | 2014

Fragment-based identification and optimization of a class of potent pyrrolo[2,1-f][1,2,4]triazine MAP4K4 inhibitors.

Lan Wang; Mark S. Stanley; Jason Boggs; Terry D. Crawford; Brandon J. Bravo; Anthony M. Giannetti; Seth F. Harris; Steven Magnuson; Jim Nonomiya; Stephen Schmidt; Ping Wu; Weilan Ye; Stephen E. Gould; Lesley J. Murray; Chudi Ndubaku; Huifen Chen

MAP4K4 has been shown to regulate key cellular processes that are tied to disease pathogenesis. In an effort to generate small molecule MAP4K4 inhibitors, a fragment-based screen was carried out and a pyrrolotriazine fragment with excellent ligand efficiency was identified. Further modification of this fragment guided by X-ray crystal structures and molecular modeling led to the discovery of a series of promising compounds with good structural diversity and physicochemical properties. These compounds exhibited single digit nanomolar potency and compounds 35 and 44 achieved good in vivo exposure.


ChemMedChem | 2014

Tailoring small molecules for an allosteric site on procaspase-6.

Jeremy Murray; Anthony M. Giannetti; Micah Steffek; Paul Gibbons; Brian R. Hearn; Frederick Cohen; Christine Tam; Christine D. Pozniak; Brandon J. Bravo; Joe Lewcock; Priyadarshini Jaishankar; Cuong Ly; Xianrui Zhao; Yinyan Tang; Preeti Chugha; Michelle R. Arkin; John A. Flygare; Adam R. Renslo

Although they represent attractive therapeutic targets, caspases have so far proven recalcitrant to the development of drugs targeting the active site. Allosteric modulation of caspase activity is an alternate strategy that potentially avoids the need for anionic and electrophilic functionality present in most active‐site inhibitors. Caspase‐6 has been implicated in neurodegenerative disease, including Huntington’s and Alzheimer’s diseases. Herein we describe a fragment‐based lead discovery effort focused on caspase‐6 in its active and zymogen forms. Fragments were identified for procaspase‐6 using surface plasmon resonance methods and subsequently shown by X‐ray crystallography to bind a putative allosteric site at the dimer interface. A fragment‐merging strategy was employed to produce nanomolar‐affinity ligands that contact residues in the L2 loop at the dimer interface, significantly stabilizing procaspase‐6. Because rearrangement of the L2 loop is required for caspase‐6 activation, our results suggest a strategy for the allosteric control of caspase activation with drug‐like small molecules.


Journal of Medicinal Chemistry | 2017

Structure-Based Design of Tricyclic NF-κB Inducing Kinase (NIK) Inhibitors That Have High Selectivity over Phosphoinositide-3-kinase (PI3K)

Georgette Castanedo; Nicole Blaquiere; Maureen Beresini; Brandon J. Bravo; Hans Brightbill; Jacob Chen; Haifeng Cui; Charles Eigenbrot; Christine Everett; Jianwen Feng; Robert Godemann; Emily Gogol; Sarah G. Hymowitz; Adam R. Johnson; Nobuhiko Kayagaki; Pawan Bir Kohli; Kathleen Knüppel; Joachim Kraemer; Susan Krüger; Pui Loke; Paul A. McEwan; Christian Montalbetti; David Anthony Roberts; Myron Smith; Stefan Steinbacher; Swathi Sujatha-Bhaskar; Ryan Takahashi; Xiaolu Wang; Lawren C. Wu; Yamin Zhang

We report here structure-guided optimization of a novel series of NF-κB inducing kinase (NIK) inhibitors. Starting from a modestly potent, low molecular weight lead, activity was improved by designing a type 11/2 binding mode that accessed a back pocket past the methionine-471 gatekeeper. Divergent binding modes in NIK and PI3K were exploited to dampen PI3K inhibition while maintaining NIK inhibition within these series. Potent compounds were discovered that selectively inhibit the nuclear translocation of NF-κB2 (p52/REL-B) but not canonical NF-κB1 (REL-A/p50).


Bioorganic & Medicinal Chemistry Letters | 2014

Fragment-based design of 3-aminopyridine-derived amides as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT).

Peter S. Dragovich; Guiling Zhao; Timm Baumeister; Brandon J. Bravo; Anthony M. Giannetti; Yen-Ching Ho; Rongbao Hua; Guangkun Li; Xiaorong Liang; Xiaolei Ma; Thomas O’Brien; Angela Oh; Nicholas J. Skelton; Chengcheng Wang; Weiru Wang; Yunli Wang; Yang Xiao; Po-wai Yuen; Mark Zak; Qiang Zhao; Xiaozhang Zheng

The fragment-based identification of two novel and potent biochemical inhibitors of the nicotinamide phosphoribosyltransferase (NAMPT) enzyme is described. These compounds (51 and 63) incorporate an amide moiety derived from 3-aminopyridine, and are thus structurally distinct from other known anti-NAMPT agents. Each exhibits potent inhibition of NAMPT biochemical activity (IC50=19 and 15 nM, respectively) as well as robust antiproliferative properties in A2780 cell culture experiments (IC50=121 and 99 nM, respectively). However, additional biological studies indicate that only inhibitor 51 exerts its A2780 cell culture effects via a NAMPT-mediated mechanism. The crystal structures of both 51 and 63 in complex with NAMPT are also independently described.

Collaboration


Dive into the Brandon J. Bravo's collaboration.

Top Co-Authors

Avatar

Anthony M. Giannetti

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adam R. Renslo

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian R. Hearn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge