Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brandon J. Tefft is active.

Publication


Featured researches published by Brandon J. Tefft.


Acta Biomaterialia | 2014

Scaffolds for tissue engineering of cardiac valves

Soumen Jana; Brandon J. Tefft; Daniel B. Spoon; Robert D. Simari

Tissue engineered heart valves offer a promising alternative for the replacement of diseased heart valves avoiding the limitations faced with currently available bioprosthetic and mechanical heart valves. In the paradigm of tissue engineering, a three-dimensional platform - the so-called scaffold - is essential for cell proliferation, growth and differentiation, as well as the ultimate generation of a functional tissue. A foundation for success in heart valve tissue engineering is a recapitulation of the complex design and diverse mechanical properties of a native valve. This article reviews technological details of the scaffolds that have been applied to date in heart valve tissue engineering research.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia

Shu Q. Liu; Brandon J. Tefft; Derek Roberts; Li Qun Zhang; Yupeng Ren; Yan Chun Li; Yong Huang; Di Zhang; Harry R. Phillips; Yu H. Wu

Myocardial ischemia (MI) activates innate cardioprotective mechanisms, enhancing cardiomyocyte tolerance to ischemia. Here, we report a MI-activated liver-dependent mechanism for myocardial protection. In response to MI in the mouse, hepatocytes exhibited 6- to 19-fold upregulation of genes encoding secretory proteins, including α-1-acid glycoprotein (AGP)2, bone morphogenetic protein-binding endothelial regulator (BMPER), chemokine (C-X-C motif) ligand 13, fibroblast growth factor (FGF)21, neuregulin (NRG)4, proteoglycan 4, and trefoil factor (TFF)3. Five of these proteins, including AGP2, BMPER, FGF21, NRG4, and TFF3, were identified as cardioprotective proteins since administration of each protein significantly reduced the fraction of myocardial infarcts (37 ± 9%, 34 ± 7%, 32 ± 8%, 39 ± 6%, and 31 ± 7%, respectively, vs. 48 ± 7% for PBS at 24 h post-MI). The serum level of the five proteins elevated significantly in association with protein upregulation in hepatocytes post-MI. Suppression of a cardioprotective protein by small interfering (si)RNA-mediated gene silencing resulted in a significant increase in the fraction of myocardial infarcts, and suppression of all five cardioprotective proteins with siRNAs further intensified myocardial infarction. While administration of a single cardioprotective protein mitigated myocardial infarction, administration of all five proteins furthered the beneficial effect, reducing myocardial infarct fractions from PBS control values from 46 ± 6% (5 days), 41 ± 5% (10 days), and 34 ± 4% (30 days) to 35 ± 5%, 28 ± 5%, and 24 ± 4%, respectively. These observations suggest that the liver contributes to cardioprotection in MI by upregulating and releasing protective secretory proteins. These proteins may be used for the development of cardioprotective agents.


Journal of Magnetism and Magnetic Materials | 2017

Magnetizable stent-grafts enable endothelial cell capture.

Brandon J. Tefft; Susheil Uthamaraj; J. Jonathan Harburn; Ota Hlinomaz; Amir Lerman; Dan Dragomir-Daescu; Gurpreet S. Sandhu

Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.


JACC: Basic to Translational Science | 2017

Supercritical Carbon Dioxide–Based Sterilization of Decellularized Heart Valves

Ryan S. Hennessy; Soumen Jana; Brandon J. Tefft; Meghana R.K. Helder; Melissa D. Young; Rebecca R. Hennessy; Nicholas J. Stoyles; Amir Lerman

Visual Abstract


IEEE Transactions on Magnetics | 2013

Magnetizable Duplex Steel Stents Enable Endothelial Cell Capture

Brandon J. Tefft; Janelle Y. Gooden; Susheil Uthamaraj; J. Jonathan Harburn; Martin Klabusay; David R. Holmes; Robert D. Simari; Dan Dragomir-Daescu; Gurpreet S. Sandhu

Emerging medical nanotechnology applications often utilize magnetic forces to guide the movement of superparamagnetic particle linked cells and drugs in order to achieve a therapeutic effect. Superparamagnetic particle labeled endothelial cells have previously been captured on the surface of prototype nickel-plated stents in proof of concept studies. Facilitated endothelialization may help improve the healing of stented arteries and reduce the risk of stent thrombosis and restenosis. Extensive evaluation of candidate materials led to the development of a magnetizable 2205 duplex stainless steel stent. Magnetic field strengths of approximately 630 mG were induced within these stents by holding them in close proximity to a 0.7 T rare earth magnet. The magnetic field strength was reliably maintained over several days, but was partially reduced upon mild mechanical shock or plastic deformation. Mechanical testing demonstrated that stents could withstand crimping and expansion necessary for vascular implantation; however, magnetic field strength was significantly reduced. When placed in an endothelial cell suspension of 1×106 cells/mL, magnetized stents captured approximately 310 cells/mm2 compared to approximately 35 cells/mm2 for non-magnetized control stents. These data provide quantitative support to the observation that low level magnetization of stents may be adequate to attract labeled, autologous, blood-derived endothelial outgrowth cells following stent placement. This, in turn, may lead to more rapid and complete healing of stented arteries with a concomitant improvement in stent performance.


Matrix Biology | 2008

Formation of smooth muscle α actin filaments in CD34+ bone marrow cells on arterial elastic laminae: Potential role of SH2 domain-containing protein tyrosine phosphatase-1

Shu Q. Liu; Brandon J. Tefft; Andy Zhang; Li Qun Zhang; Yu H. Wu

Arterial smooth muscle cells (SMCs) are present in the elastic lamina-containing media, suggesting that the elastic laminae may regulate the development of SMCs. Here, we investigated the role of elastic laminae in regulating the formation of SM alpha actin filaments in mouse CD34+ bone marrow cells and the role of a protein tyrosine phosphatase, SH2 domain-containing protein tyrosine phosphatase (SHP)-1, in the mediation of this process. Mouse CD34+ bone marrow cells were isolated by magnetic separation and used for assessing the influence of elastic laminae and collagen matrix on the formation of SM alpha actin filaments. CD34+ cells with transgenic SHP-1 knockout or siRNA-mediated SHP-1 knockdown were used to assess the role of SHP-1 in mediating the formation of SM alpha actin filaments. In cell culture tests, elastic laminae, but not collagen matrix, stimulated the formation of SM alpha actin filaments in CD34+ cells. The phosphatase SHP-1 mediated the stimulatory effect of elastic laminae. The interaction of CD34+ cells with elastic laminae, but not with collagen matrix, induced activation of SHP-1. The suppression of SHP-1 by transgenic SHP-1 knockout or siRNA-mediated SHP-1 knockdown significantly reduced the formation of SM alpha actin filaments in CD34+ cells cultured on elastic laminae. The in vitro observations were confirmed by using an in vivo model of implantation of elastic lamina and collagen matrix scaffolds into the aorta. These observations suggest that elastic laminae stimulate the formation of SM alpha actin filaments in CD34+ bone marrow cells and SHP-1 mediates the stimulatory effect of elastic laminae.


Journal of Visualized Experiments | 2015

Ferromagnetic Bare Metal Stent for Endothelial Cell Capture and Retention

Susheil Uthamaraj; Brandon J. Tefft; Ota Hlinomaz; Gurpreet S. Sandhu; Dan Dragomir-Daescu

Rapid endothelialization of cardiovascular stents is needed to reduce stent thrombosis and to avoid anti-platelet therapy which can reduce bleeding risk. The feasibility of using magnetic forces to capture and retain endothelial outgrowth cells (EOC) labeled with super paramagnetic iron oxide nanoparticles (SPION) has been shown previously. But this technique requires the development of a mechanically functional stent from a magnetic and biocompatible material followed by in-vitro and in-vivo testing to prove rapid endothelialization. We developed a weakly ferromagnetic stent from 2205 duplex stainless steel using computer aided design (CAD) and its design was further refined using finite element analysis (FEA). The final design of the stent exhibited a principal strain below the fracture limit of the material during mechanical crimping and expansion. One hundred stents were manufactured and a subset of them was used for mechanical testing, retained magnetic field measurements, in-vitro cell capture studies, and in-vivo implantation studies. Ten stents were tested for deployment to verify if they sustained crimping and expansion cycle without failure. Another 10 stents were magnetized using a strong neodymium magnet and their retained magnetic field was measured. The stents showed that the retained magnetism was sufficient to capture SPION-labeled EOC in our in-vitro studies. SPION-labeled EOC capture and retention was verified in large animal models by implanting 1 magnetized stent and 1 non-magnetized control stent in each of 4 pigs. The stented arteries were explanted after 7 days and analyzed histologically. The weakly magnetic stents developed in this study were capable of attracting and retaining SPION-labeled endothelial cells which can promote rapid healing.


Journal of Nanotechnology in Engineering and Medicine | 2011

Enhancing Endothelial Cell Retention on ePTFE Constructs by siRNA-Mediated SHP-1 Gene Silencing

Brandon J. Tefft; Adrian M. Kopacz; Wing Kam Liu; Shu Q. Liu

Polymeric vascular grafts hold great promise for vascular reconstruction, but the lack of endothelial cells renders these grafts susceptible to intimal hyperplasia and restenosis, precluding widespread clinical applications. The purpose of this study is to establish a stable endothelium on expanded polytetrafluoroethylene (ePTFE) membrane by small interfering RNA (siRNA)-induced suppression of the cell adhesion inhibitor SH2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were treated with scrambled siRNA as a control or SHP-1 specific siRNA. Treated cells were seeded onto fibronectin-coated ePTFE scaffolds and exposed to a physiological range of pulsatile fluid shear stresses for 1 h in a variable-width parallel plate flow chamber. Retention of cells was measured and compared between various shear stress levels and between groups treated with scrambled siRNA and SHP-1 specific siRNA. HUVECs seeded on ePTFE membrane exhibited shear stress-dependent retention. Exposure to physiological shear stress (10 dyn/cm 2 ) induced a reduction in the retention of scrambled siRNA treated cells from 100% to 85% at 1 h. Increased shear stress (20 dyn/cm 2 ) further reduced retention of scrambled siRNA treated cells to 55% at 1 h. SHP-1 knockdown mediated by siRNA enhanced endothelial cell retention from approximately 60% to 85% after 1 h of exposure to average shear stresses in the range of 15―30 dyn/cm 2 . This study demonstrates that siRNA-mediated gene silencing may be an effective strategy for improving the retention of endothelial cells within vascular grafts.


PLOS ONE | 2017

Recellularization of a novel off-the-shelf valve following xenogenic implantation into the right ventricular outflow tract

Ryan S. Hennessy; Jason L. Go; Rebecca R. Hennessy; Brandon J. Tefft; Soumen Jana; Nicholas J. Stoyles; Mohammed Al-Hijji; Jeremy J. Thaden; Sorin V. Pislaru; Robert D. Simari; John M. Stulak; Melissa D. Young; Amir Lerman

Current research on valvular heart repair has focused on tissue-engineered heart valves (TEHV) because of its potential to grow similarly to native heart valves. Decellularized xenografts are a promising solution; however, host recellularization remains challenging. In this study, decellularized porcine aortic valves were implanted into the right ventricular outflow tract (RVOT) of sheep to investigate recellularization potential. Porcine aortic valves, decellularized with sodium dodecyl sulfate (SDS), were sterilized by supercritical carbon dioxide (scCO2) and implanted into the RVOT of five juvenile polypay sheep for 5 months (n = 5). During implantation, functionality of the valves was assessed by serial echocardiography, blood tests, and right heart pulmonary artery catheterization measurements. The explanted valves were characterized through gross examination, mechanical characterization, and immunohistochemical analysis including cell viability, phenotype, proliferation, and extracellular matrix generation. Gross examination of the valve cusps demonstrated the absence of thrombosis. Bacterial and fungal stains were negative for pathogenic microbes. Immunohistochemical analysis showed the presence of myofibroblast-like cell infiltration with formation of new collagen fibrils and the existence of an endothelial layer at the surface of the explant. Analysis of cell phenotype and morphology showed no lymphoplasmacytic infiltration. Tensile mechanical testing of valve cusps revealed an increase in stiffness while strength was maintained during implantation. The increased tensile stiffness confirms the recellularization of the cusps by collagen synthesizing cells. The current study demonstrated the feasibility of the trans-species implantation of a non-fixed decellularized porcine aortic valve into the RVOT of sheep. The implantation resulted in recellularization of the valve with sufficient hemodynamic function for the 5-month study. Thus, the study supports a potential role for use of a TEHV for the treatment of valve disease in humans.


Journal of Visualized Experiments | 2015

Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles.

Brandon J. Tefft; Susheil Uthamaraj; J. Jonathan Harburn; Martin Klabusay; Dan Dragomir-Daescu; Gurpreet S. Sandhu

Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.

Collaboration


Dive into the Brandon J. Tefft's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu Q. Liu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soumen Jana

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge