Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brandon J. Wainwright is active.

Publication


Featured researches published by Brandon J. Wainwright.


Cell | 1996

Mutations of the Human Homolog of Drosophila patched in the Nevoid Basal Cell Carcinoma Syndrome

Heidi Hahn; Carol Wicking; Peter G. Zaphiropoulos; Mae R. Gailani; Susan Shanley; Abirami Chidambaram; Igor Vorechovsky; Erika Holmberg; Anne Birgitte Undén; Susan Gillies; Kylie Negus; Ian Smyth; Carolyn Pressman; David J. Leffell; Bernard Gerrard; Alisa M. Goldstein; Michael Dean; Rune Toftgård; Georgia Chenevix-Trench; Brandon J. Wainwright; Allen E. Bale

The nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by multiple basal cell carcinomas (BCCs), pits of the palms and soles, jaw keratocysts, a variety of other tumors, and developmental abnormalities. NBCCS maps to chromosome 9q22.3. Familial and sporadic BCCs display loss of heterozygosity in this region, consistent with the gene being a tumor suppressor. A human sequence (PTC) with strong homology to the Drosophila segment polarity gene, patched, was isolated from a YAC and cosmid contig of the NBCCS region. Mutation analysis revealed alterations of PTC in NBCCS patients and in related tumors. We propose that a reduction in expression of the patched gene can lead to the developmental abnormalities observed in the syndrome and that complete loss of patched function contributes to transformation of certain cell types.


Nature Genetics | 2002

Mutations in SUFU predispose to medulloblastoma

Michael D. Taylor; Ling Liu; Corey Raffel; Chi-chung Hui; Todd G. Mainprize; Xiaoyun Zhang; Ron Agatep; Sharon Chiappa; Luzhang Gao; Anja Lowrance; Aihau Hao; Alisa M. Goldstein; Theodora Stavrou; Stephen W. Scherer; Wieslaw T. Dura; Brandon J. Wainwright; Jeremy A. Squire; James T. Rutka; David Hogg

The sonic hedgehog (SHH) signaling pathway directs the embryonic development of diverse organisms and is disrupted in a variety of malignancies. Pathway activation is triggered by binding of hedgehog proteins to the multipass Patched-1 (PTCH) receptor, which in the absence of hedgehog suppresses the activity of the seven-pass membrane protein Smoothened (SMOH). De-repression of SMOH culminates in the activation of one or more of the GLI transcription factors that regulate the transcription of downstream targets. Individuals with germline mutations of the SHH receptor gene PTCH are at high risk of developmental anomalies and of basal-cell carcinomas, medulloblastomas and other cancers (a pattern consistent with nevoid basal-cell carcinoma syndrome, NBCCS). In keeping with the role of PTCH as a tumor-suppressor gene, somatic mutations of this gene occur in sporadic basal-cell carcinomas and medulloblastomas. We report here that a subset of children with medulloblastoma carry germline and somatic mutations in SUFU (encoding the human suppressor of fused) of the SHH pathway, accompanied by loss of heterozygosity of the wildtype allele. Several of these mutations encode truncated proteins that are unable to export the GLI transcription factor from nucleus to cytoplasm, resulting in the activation of SHH signaling. SUFU is a newly identified tumor-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signaling pathway through a newly identified mechanism.


Cancer Cell | 2008

Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells

Zeng-Jie Yang; Tammy Ellis; Shirley L. Markant; Tracy-Ann Read; Jessica D. Kessler; Melissa Bourboulas; Ulrich Schüller; Robert P. Machold; Gord Fishell; David H. Rowitch; Brandon J. Wainwright; Robert J. Wechsler-Reya

Medulloblastoma is the most common malignant brain tumor in children, but the cells from which it arises remain unclear. Here we examine the origin of medulloblastoma resulting from mutations in the Sonic hedgehog (Shh) pathway. We show that activation of Shh signaling in neuronal progenitors causes medulloblastoma by 3 months of age. Shh pathway activation in stem cells promotes stem cell proliferation but only causes tumors after commitment to-and expansion of-the neuronal lineage. Notably, tumors initiated in stem cells develop more rapidly than those initiated in progenitors, with all animals succumbing by 3-4 weeks. These studies suggest that medulloblastoma can be initiated in progenitors or stem cells but that Shh-induced tumorigenesis is associated with neuronal lineage commitment.


Blood | 2010

An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation

Kelli P. A. MacDonald; James S. Palmer; Stephen L. Cronau; Elke Seppanen; Stuart D. Olver; Neil C. Raffelt; Rachel D. Kuns; Allison R. Pettit; Andrew D. Clouston; Brandon J. Wainwright; Dan Branstetter; Jeffrey Smith; Raymond J. Paxton; Douglas Pat Cerretti; Lynn Bonham; Geoffrey R. Hill; David A. Hume

The development of the mononuclear phagocyte system requires macrophage colony-stimulating factor (CSF-1) signaling through the CSF-1 receptor (CSF1R, CD115). We examined the effect of an antibody against CSF1R on macrophage homeostasis and function using the MacGreen transgenic mouse (csf1r-enhanced green fluorescent protein) as a reporter. The administration of a novel CSF1R blocking antibody selectively reduced the CD115(+)Gr-1(neg) monocyte precursor of resident tissue macrophages. CD115(+)Gr-1(+) inflammatory monocytes were correspondingly increased, supporting the view that monocytes are a developmental series. Within tissue, the antibody almost completely depleted resident macrophage populations in the peritoneum, gastrointestinal tract, liver, kidney, and skin, but not in the lung or female reproductive organs. CSF1R blockade reduced the numbers of tumor-associated macrophages in syngeneic tumor models, suggesting that these cells are resident type macrophages. Conversely, it had no effect on inflammatory monocyte recruitment in models, including lipopolysaccharide-induced lung inflammation, wound healing, peritonitis, and severe acute graft-versus-host disease. Depletion of resident tissue macrophages from bone marrow transplantation recipients actually resulted in accelerated pathology and exaggerated donor T-cell activation. The data indicate that CSF1R signaling is required only for the maturation and replacement of resident-type monocytes and tissue macrophages, and is not required for monocyte production or inflammatory function.


Journal of Biological Chemistry | 1996

A Mammalian patched Homolog Is Expressed in Target Tissues of sonic hedgehog and Maps to a Region Associated with Developmental Abnormalities

Heidi Hahn; Jeffrey H. Christiansen; Carol Wicking; Peter G. Zaphiropoulos; Abirami Chidambaram; Bernard Gerrard; Igor Vorechovsky; Allen E. Bale; Rune Toftgård; Michael Dean; Brandon J. Wainwright

Drosophila patched is a segment polarity gene required for the correct patterning of larval segments and imaginal discs during fly development and has a close functional relationship with hedgehog. We have isolated a complete human PATCHED cDNA sequence, which encodes a putative protein of 1296 amino acids, and displays 39% identity and 60% similarity to the Drosophila PATCHED protein. Hydropathy analysis suggests that human PATCHED is an integral membrane protein with a pattern of hydrophobic and hydrophilic stretches nearly identical to that of Drosophila patched. In the developing mouse embryo, patched is initially detected within the ventral neural tube and later in the somites and limb buds. Expression in the limb buds is restricted to the posterior ectoderm surrounding the zone of polarizing activity. The results show that patched is expressed in target tissues of sonic hedgehog, a murine homolog of Drosophila hedgehog suggesting that patched/hedgehog interactions have been conserved during evolution. Human PATCHED maps to human chromosome 9q22.3, the candidate region for the nevoid basal cell carcinoma syndrome. Patched expression is compatible with the congenital defects observed in the nevoid basal cell carcinoma syndrome.


Nature Genetics | 2003

Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein.

Lm McGregor; Vile Makela; S Darling; Sofia Vrontou; Georges Chalepakis; Catherine Roberts; Nicola Smart; Paul Rutland; Natalie J. Prescott; Jason Hopkins; Elizabeth Bentley; Alison Shaw; Emma Roberts; Robert F. Mueller; Shalini Jadeja; Nicole Philip; John Nelson; Christine Francannet; Antonio Perez-Aytes; André Mégarbané; Bronwyn Kerr; Brandon J. Wainwright; Adrian S. Woolf; Robin M. Winter; Peter J. Scambler

Fraser syndrome (OMIM 219000) is a multisystem malformation usually comprising cryptophthalmos, syndactyly and renal defects. Here we report autozygosity mapping and show that the locus FS1 at chromosome 4q21 is associated with Fraser syndrome, although the condition is genetically heterogeneous. Mutation analysis identified five frameshift mutations in FRAS1, which encodes one member of a family of novel proteins related to an extracellular matrix (ECM) blastocoelar protein found in sea urchin. The FRAS1 protein contains a series of N-terminal cysteine-rich repeat motifs previously implicated in BMP metabolism, suggesting that it has a role in both structure and signal propagation in the ECM. It has been speculated that Fraser syndrome is a human equivalent of the blebbed phenotype in the mouse, which has been associated with mutations in at least five loci including bl. As mapping data were consistent with homology of FRAS1 and bl, we screened DNA from bl/bl mice and identified a premature termination of mouse Fras1. Thus, the bl mouse is a model for Fraser syndrome in humans, a disorder caused by disrupted epithelial integrity in utero.


Mechanisms of Development | 1995

Murine Wnt-11 and Wnt-12 have temporally and spatially restricted expression patterns during embryonic development

Jeffrey H. Christiansen; Carina L. Dennis; Carol Wicking; Susan J. Monkley; David G. Wilkinson; Brandon J. Wainwright

The Wnt gene family encodes a set of signalling molecules implicated in the development of a wide range of organisms. We have recently cloned partial cDNA sequences of murine Wnt-11 and Wnt-12. Here, we describe the spatio-temporal expression patterns of both genes during mouse embryogenesis. Wnt-11 expression is first detected within the truncus arteriosus from 8.25 dpc. By 9.5 dpc, Wnt-11 expression is detected in the somites at the medial junction of the dermatome and the myotome. Wnt-11 transcripts are also detected in limb bud mesenchyme from the time the bud is first visible. Wnt-12 is detected in the apical ectodermal ridge from 10.5 dpc. The implications of these expression patterns are discussed.


Oncogene | 2008

Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling

Wendy J. Ingram; K I McCue; T H Tran; Andrew Hallahan; Brandon J. Wainwright

Aberrant regulation of signalling mechanisms that normally orchestrate embryonic development, such as the Hedgehog, Wnt and Notch pathways, is a common feature of tumorigenesis. In order to better understand the neoplastic events mediated by Hedgehog signalling, we identified over 200 genes regulated by Sonic Hedgehog in multipotent mesodermal cells. Widespread crosstalk with other developmental signalling pathways is evident, suggesting a complex network of interactions that challenges the often over-simplistic representation of these pathways as simple linear entities. Hes1, a principal effector of the Notch pathway, was found to be a target of Sonic Hedgehog in both C3H/10T1/2 mesodermal and MNS70 neural cells. Desert Hedgehog also elicited a strong Hes1 response. While Smoothened function was found necessary for upregulation of Hes1 in response to Sonic Hedgehog, the mechanism does not require γ-secretase-mediated cleavage of Notch receptors, and appears to involve transcription factors other than RBP-Jκ. Thus, we have defined a novel mechanism for Hes1 regulation in stem-like cells that is independent of canonical Notch signalling.


BMC Immunology | 2003

Genetic control of the innate immune response

Christine A. Wells; Timothy Ravasi; Geoffrey J. Faulkner; Piero Carninci; Yasushi Okazaki; Yoshihide Hayashizaki; Matthew J. Sweet; Brandon J. Wainwright; David A. Hume

BackgroundSusceptibility to infectious diseases is directed, in part, by the interaction between the invading pathogen and host macrophages. This study examines the influence of genetic background on host-pathogen interactions, by assessing the transcriptional responses of macrophages from five inbred mouse strains to lipopolysaccharide (LPS), a major determinant of responses to gram-negative microorganisms.ResultsThe mouse strains examined varied greatly in the number, amplitude and rate of induction of genes expressed in response to LPS. The response was attenuated in the C3H/HeJlpsdstrain, which has a mutation in the LPS receptor Toll-like receptor 4 (TLR4). Variation between mouse strains allowed clustering into early (C57Bl/6J and DBA/2J) and delayed (BALB/c and C3H/ARC) transcriptional phenotypes. There was no clear correlation between gene induction patterns and variation at the Bcg locus (Slc11A1) or propensity to bias Th1 versus Th2 T cell activation responses.ConclusionMacrophages from each strain responded to LPS with unique gene expression profiles. The variation apparent between genetic backgrounds provides insights into the breadth of possible inflammatory responses, and paradoxically, this divergence was used to identify a common transcriptional program that responds to TLR4 signalling, irrespective of genetic background. Our data indicates that many additional genetic loci control the nature and the extent of transcriptional responses promoted by a single pathogen-associated molecular pattern (PAMP), such as LPS.


Oncogene | 2002

Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells

Wendy J. Ingram; Carol Wicking; Sean M. Grimmond; Alistair Raymond Russell Forrest; Brandon J. Wainwright

Sonic Hedgehog is a secreted morphogen involved in patterning a wide range of structures in the developing embryo. Disruption of the Hedgehog signalling cascade leads to a number of developmental disorders and plays a key role in the formation of a range of human cancers. The identification of genes regulated by Hedgehog is crucial to understanding how disruption of this pathway leads to neoplastic transformation. We have used a Sonic Hedgehog (Shh) responsive mouse cell line, C3H/10T1/2, to provide a model system for hedgehog target gene discovery. Following activation of cell cultures with Shh, RNA was used to interrogate microarrays to investigate downstream transcriptional consequences of hedgehog stimulation. As a result 11 target genes have been identified, seven of which are induced (Thrombomodulin, GILZ, BF-2, Nr4a1, IGF2, PMP22, LASP1) and four of which are repressed (SFRP-1, SFRP-2, Mip1-γ, Amh) by Shh. These targets have a diverse range of putative functions and include transcriptional regulators and molecules known to be involved in regulating cell growth or apoptosis. The corroboration of genes previously implicated in hedgehog signalling, along with the finding of novel targets, demonstrates both the validity and power of the C3H/10T1/2 system for Shh target gene discovery.

Collaboration


Dive into the Brandon J. Wainwright's collaboration.

Top Co-Authors

Avatar

Carol Wicking

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Georgia Chenevix-Trench

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tammy Ellis

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy Evans

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge