Brandon K. Swan
Bigelow Laboratory For Ocean Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brandon K. Swan.
Nature | 2013
Christian Rinke; Patrick Schwientek; Alexander Sczyrba; Natalia Ivanova; Iain Anderson; Jan-Fang Cheng; Aaron E. Darling; Stephanie Malfatti; Brandon K. Swan; Esther A. Gies; Jeremy A. Dodsworth; Brian P. Hedlund; Georgios Tsiamis; Stefan M. Sievert; Wen Tso Liu; Jonathan A. Eisen; Steven J. Hallam; Nikos C. Kyrpides; Ramunas Stepanauskas; Edward M. Rubin; Philip Hugenholtz; Tanja Woyke
Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called ‘microbial dark matter’. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.
Nature | 2008
Elizabeth A. Dinsdale; Robert Edwards; Dana Hall; Florent E. Angly; Mya Breitbart; Mike Furlan; Christelle Desnues; Matthew Haynes; Linlin Li; Lauren D. McDaniel; Mary Ann Moran; Karen E. Nelson; Christina Nilsson; Robert Olson; John H. Paul; Beltran Rodriguez Brito; Yijun Ruan; Brandon K. Swan; Rick Stevens; David L. Valentine; Rebecca Vega Thurber; Linda Wegley; Bryan A. White; Forest Rohwer
Microbial activities shape the biogeochemistry of the planet and macroorganism health. Determining the metabolic processes performed by microbes is important both for understanding and for manipulating ecosystems (for example, disruption of key processes that lead to disease, conservation of environmental services, and so on). Describing microbial function is hampered by the inability to culture most microbes and by high levels of genomic plasticity. Metagenomic approaches analyse microbial communities to determine the metabolic processes that are important for growth and survival in any given environment. Here we conduct a metagenomic comparison of almost 15 million sequences from 45 distinct microbiomes and, for the first time, 42 distinct viromes and show that there are strongly discriminatory metabolic profiles across environments. Most of the functional diversity was maintained in all of the communities, but the relative occurrence of metabolisms varied, and the differences between metagenomes predicted the biogeochemical conditions of each environment. The magnitude of the microbial metabolic capabilities encoded by the viromes was extensive, suggesting that they serve as a repository for storing and sharing genes among their microbial hosts and influence global evolutionary and metabolic processes.
Science | 2011
Brandon K. Swan; Manuel Martínez-García; Christina M. Preston; Alexander Sczyrba; Tanja Woyke; Dominique Lamy; Thomas Reinthaler; Nicole J. Poulton; E. Dashiell P. Masland; Monica Lluesma Gomez; Michael E. Sieracki; Edward F. DeLong; Gerhard J. Herndl; Ramunas Stepanauskas
Bacteria isolated from a deep seawater mass seem to fix carbon using energy from the oxidation of inorganic sulfur. Recent studies suggest that unidentified prokaryotes fix inorganic carbon at globally significant rates in the immense dark ocean. Using single-cell sorting and whole-genome amplification of prokaryotes from two subtropical gyres, we obtained genomic DNA from 738 cells representing most cosmopolitan lineages. Multiple cells of Deltaproteobacteria cluster SAR324, Gammaproteobacteria clusters ARCTIC96BD-19 and Agg47, and some Oceanospirillales from the lower mesopelagic contained ribulose-1,5-bisphosphate carboxylase-oxygenase and sulfur oxidation genes. These results corroborated community DNA and RNA profiling from diverse geographic regions. The SAR324 genomes also suggested C1 metabolism and a particle-associated life-style. Microautoradiography and fluorescence in situ hybridization confirmed bicarbonate uptake and particle association of SAR324 cells. Our study suggests potential chemolithoautotrophy in several uncultured Proteobacteria lineages that are ubiquitous in the dark oxygenated ocean and provides new perspective on carbon cycling in the ocean’s largest habitat.
Nature | 2008
Christelle Desnues; Beltran Rodriguez-Brito; Steve Rayhawk; Scott T. Kelley; Tuong Tran; Matthew Haynes; Hong Liu; Mike Furlan; Linda Wegley; Betty Chau; Yijun Ruan; Dana Hall; Florent E. Angly; Robert Edwards; Linlin Li; Rebecca Vega Thurber; R. Pamela Reid; Janet L. Siefert; Valeria Souza; David L. Valentine; Brandon K. Swan; Mya Breitbart; Forest Rohwer
Viruses, and more particularly phages (viruses that infect bacteria), represent one of the most abundant living entities in aquatic and terrestrial environments. The biogeography of phages has only recently been investigated and so far reveals a cosmopolitan distribution of phage genetic material (or genotypes). Here we address this cosmopolitan distribution through the analysis of phage communities in modern microbialites, the living representatives of one of the most ancient life forms on Earth. On the basis of a comparative metagenomic analysis of viral communities associated with marine (Highborne Cay, Bahamas) and freshwater (Pozas Azules II and Rio Mesquites, Mexico) microbialites, we show that some phage genotypes are geographically restricted. The high percentage of unknown sequences recovered from the three metagenomes (>97%), the low percentage similarities with sequences from other environmental viral (n = 42) and microbial (n = 36) metagenomes, and the absence of viral genotypes shared among microbialites indicate that viruses are genetically unique in these environments. Identifiable sequences in the Highborne Cay metagenome were dominated by single-stranded DNA microphages that were not detected in any other samples examined, including sea water, fresh water, sediment, terrestrial, extreme, metazoan-associated and marine microbial mats. Finally, a marine signature was present in the phage community of the Pozas Azules II microbialites, even though this environment has not been in contact with the ocean for tens of millions of years. Taken together, these results prove that viruses in modern microbialites display biogeographical variability and suggest that they may be derived from an ancient community.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Brandon K. Swan; Ben Tupper; Alexander Sczyrba; Federico M. Lauro; Manuel Martínez-García; José M. González; Haiwei Luo; Jody J. Wright; Zachary C. Landry; Niels W. Hanson; Brian Thompson; Nicole J. Poulton; Patrick Schwientek; Silvia G. Acinas; Stephen J. Giovannoni; Mary Ann Moran; Steven J. Hallam; Ricardo Cavicchioli; Tanja Woyke; Ramunas Stepanauskas
Planktonic bacteria dominate surface ocean biomass and influence global biogeochemical processes, but remain poorly characterized owing to difficulties in cultivation. Using large-scale single cell genomics, we obtained insight into the genome content and biogeography of many bacterial lineages inhabiting the surface ocean. We found that, compared with existing cultures, natural bacterioplankton have smaller genomes, fewer gene duplications, and are depleted in guanine and cytosine, noncoding nucleotides, and genes encoding transcription, signal transduction, and noncytoplasmic proteins. These findings provide strong evidence that genome streamlining and oligotrophy are prevalent features among diverse, free-living bacterioplankton, whereas existing laboratory cultures consist primarily of copiotrophs. The apparent ubiquity of metabolic specialization and mixotrophy, as predicted from single cell genomes, also may contribute to the difficulty in bacterioplankton cultivation. Using metagenome fragment recruitment against single cell genomes, we show that the global distribution of surface ocean bacterioplankton correlates with temperature and latitude and is not limited by dispersal at the time scales required for nucleotide substitution to exceed the current operational definition of bacterial species. Single cell genomes with highly similar small subunit rRNA gene sequences exhibited significant genomic and biogeographic variability, highlighting challenges in the interpretation of individual gene surveys and metagenome assemblies in environmental microbiology. Our study demonstrates the utility of single cell genomics for gaining an improved understanding of the composition and dynamics of natural microbial assemblages.
The ISME Journal | 2012
Manuel Martínez-García; Brandon K. Swan; Nicole J. Poulton; Monica Lluesma Gomez; Dashiell Masland; Michael E. Sieracki; Ramunas Stepanauskas
Recent discoveries suggest that photoheterotrophs (rhodopsin-containing bacteria (RBs) and aerobic anoxygenic phototrophs (AAPs)) and chemoautotrophs may be significant for marine and freshwater ecosystem productivity. However, their abundance and taxonomic identities remain largely unknown. We used a combination of single-cell and metagenomic DNA sequencing to study the predominant photoheterotrophs and chemoautotrophs inhabiting the euphotic zone of temperate, physicochemically diverse freshwater lakes. Multi-locus sequencing of 712 single amplified genomes, generated by fluorescence-activated cell sorting and whole genome multiple displacement amplification, showed that most of the cosmopolitan freshwater clusters contain photoheterotrophs. These comprised at least 10–23% of bacterioplankton, and RBs were the dominant fraction. Our data demonstrate that Actinobacteria, including clusters acI, Luna and acSTL, are the predominant freshwater RBs. We significantly broaden the known taxonomic range of freshwater RBs, to include Alpha-, Beta-, Gamma- and Deltaproteobacteria, Verrucomicrobia and Sphingobacteria. By sequencing single cells, we found evidence for inter-phyla horizontal gene transfer and recombination of rhodopsin genes and identified specific taxonomic groups involved in these evolutionary processes. Our data suggest that members of the ubiquitous betaproteobacteria Polynucleobacter spp. are the dominant AAPs in temperate freshwater lakes. Furthermore, the RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) gene was found in several single cells of Betaproteobacteria, Bacteroidetes and Gammaproteobacteria, suggesting that chemoautotrophs may be more prevalent among aerobic bacterioplankton than previously thought. This study demonstrates the power of single-cell DNA sequencing addressing previously unresolved questions about the metabolic potential and evolutionary histories of uncultured microorganisms, which dominate most natural environments.
PLOS ONE | 2012
Manuel Martínez-García; David M. Brazel; Brandon K. Swan; Carol Arnosti; Patrick Chain; Krista G. Reitenga; Gary Xie; Nicole J. Poulton; Monica Lluesma Gomez; Dashiell Masland; Brian Thompson; Wendy K. Bellows; Kai Ziervogel; Chien Chi Lo; Sanaa Ahmed; Cheryl D. Gleasner; Chris Detter; Ramunas Stepanauskas
Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.
Applied and Environmental Microbiology | 2010
Brandon K. Swan; Christopher J. Ehrhardt; Kristen M. Reifel; Lilliana I. Moreno; David L. Valentine
ABSTRACT Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.
The ISME Journal | 2015
Jessica M. Labonté; Brandon K. Swan; Bonnie T. Poulos; Haiwei Luo; Sergey Koren; Steven J. Hallam; Matthew B. Sullivan; Tanja Woyke; K. Eric Wommack; Ramunas Stepanauskas
Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus–host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. A combination of comparative genomics, metagenomic fragment recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus–host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage–host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. Our study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host–virus interactions in complex microbial communities.
The ISME Journal | 2014
Haiwei Luo; Bradley B. Tolar; Brandon K. Swan; Chuanlun L Zhang; Ramunas Stepanauskas; Mary Ann Moran; James T. Hollibaugh
Previous studies based on analysis of amoA, 16S ribosomal RNA or accA gene sequences have established that marine Thaumarchaeota fall into two phylogenetically distinct groups corresponding to shallow- and deep-water clades, but it is not clear how water depth interacts with other environmental factors, including light, temperature and location, to affect this pattern of diversification. Earlier studies focused on single-gene distributions were not able to link phylogenetic structure to other aspects of functional adaptation. Here, we analyzed the genome content of 46 uncultivated single Thaumarchaeota cells sampled from epi- and mesopelagic waters of subtropical, temperate and polar oceans. Phylogenomic analysis showed that populations diverged by depth, as expected, and that mesopelagic populations from different locations were well mixed. Functional analysis showed that some traits, including putative DNA photolyase and catalase genes that may be related to adaptive mechanisms to reduce light-induced damage, were found exclusively in members of the epipelagic clade. Our analysis of partial genomes has thus confirmed the depth differentiation of Thaumarchaeota populations observed previously, consistent with the distribution of putative mechanisms to reduce light-induced damage in shallow- and deep-water populations.