Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brandon S. Gaut is active.

Publication


Featured researches published by Brandon S. Gaut.


Nature Genetics | 2006

A unified mixed-model method for association mapping that accounts for multiple levels of relatedness

Jianming Yu; Gael Pressoir; William H. Briggs; Irie Vroh Bi; Masanori Yamasaki; John Doebley; Michael D. McMullen; Brandon S. Gaut; Dahlia M. Nielsen; James B. Holland; Stephen Kresovich; Edward S. Buckler

As population structure can result in spurious associations, it has constrained the use of association studies in human and plant genetics. Association mapping, however, holds great promise if true signals of functional association can be separated from the vast number of false signals generated by population structure. We have developed a unified mixed-model approach to account for multiple levels of relatedness simultaneously as detected by random genetic markers. We applied this new approach to two samples: a family-based sample of 14 human families, for quantitative gene expression dissection, and a sample of 277 diverse maize inbred lines with complex familial relationships and population structure, for quantitative trait dissection. Our method demonstrates improved control of both type I and type II error rates over other methods. As this new method crosses the boundary between family-based and structured association samples, it provides a powerful complement to currently available methods for association mapping.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.)

Maud I. Tenaillon; Mark C. Sawkins; Anthony D. Long; Rebecca L. Gaut; John Doebley; Brandon S. Gaut

We measured sequence diversity in 21 loci distributed along chromosome 1 of maize (Zea mays ssp. mays L.). For each locus, we sequenced a common sample of 25 individuals representing 16 exotic landraces and nine U.S. inbred lines. The data indicated that maize has an average of one single nucleotide polymorphism (SNP) every 104 bp between two randomly sampled sequences, a level of diversity higher than that of either humans or Drosophila melanogaster. A comparison of genetic diversity between the landrace and inbred samples showed that inbreds retained 77% of the level of diversity of landraces, on average. In addition, Tajimas D values suggest that the frequency distribution of polymorphisms in inbreds was skewed toward fewer rare variants. Tests for selection were applied to all loci, and deviations from neutrality were detected in three loci. Sequence diversity was heterogeneous among loci, but there was no pattern of diversity along the genetic map of chromosome 1. Nonetheless, diversity was correlated (r = 0.65) with sequence-based estimates of the recombination rate. Recombination in our sample was sufficient to break down linkage disequilibrium among SNPs. Intragenic linkage disequilibrium declines within 100–200 bp on average, suggesting that genome-wide surveys for association analyses require SNPs every 100–200 bp.


Nature Genetics | 2011

The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

Tina T. Hu; Pedro Pattyn; Erica G. Bakker; Jun Cao; Jan Fang Cheng; Richard M. Clark; Noah Fahlgren; Jeffrey A. Fawcett; Jane Grimwood; Heidrun Gundlach; Georg Haberer; Jesse D. Hollister; Stephan Ossowski; Robert P. Ottilar; Asaf Salamov; Korbinian Schneeberger; Manuel Spannagl; Xi Wang; Liang Yang; Mikhail E. Nasrallah; Joy Bergelson; James C. Carrington; Brandon S. Gaut; Jeremy Schmutz; Klaus F. X. Mayer; Yves Van de Peer; Igor V. Grigoriev; Magnus Nordborg; Detlef Weigel; Ya-Long Guo

We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3× dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis.


Nature Genetics | 2012

Maize HapMap2 identifies extant variation from a genome in flux

Jer-Ming Chia; Chi Song; Peter J. Bradbury; Denise E. Costich; Natalia de Leon; John Doebley; Robert J. Elshire; Brandon S. Gaut; Laura Geller; Jeffrey C. Glaubitz; Michael A. Gore; Kate Guill; James B. Holland; Matthew B. Hufford; Jinsheng Lai; Meng Li; Xin Liu; Yanli Lu; Richard McCombie; Rebecca J. Nelson; Jesse Poland; Boddupalli M. Prasanna; Tanja Pyhäjärvi; Tingzhao Rong; Rajandeep S. Sekhon; Qi Sun; Maud I. Tenaillon; Feng Tian; Jun Wang; Xun Xu

Whereas breeders have exploited diversity in maize for yield improvements, there has been limited progress in using beneficial alleles in undomesticated varieties. Characterizing standing variation in this complex genome has been challenging, with only a small fraction of it described to date. Using a population genetics scoring model, we identified 55 million SNPs in 103 lines across pre-domestication and domesticated Zea mays varieties, including a representative from the sister genus Tripsacum. We find that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits. By investigating the drivers of genome size variation, we find that the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin. In contrast, intraspecies genome size variation seems to be controlled by chromosomal knob content. There is tremendous overlap in key gene content in maize and Tripsacum, suggesting that adaptations from Tripsacum (for example, perennialism and frost and drought tolerance) can likely be integrated into maize.


Science | 2012

The Molecular Diversity of Adaptive Convergence

Olivier Tenaillon; Alejandra Rodríguez-Verdugo; Rebecca L. Gaut; Pamela McDonald; Albert F. Bennett; Anthony D. Long; Brandon S. Gaut

Natural Selection Caught in the Act Understanding how new functions evolve has been of long-standing interest. However, the number of mutations needed to evolve a key innovation is rarely known, or whether other sets of mutations would also suffice, whether the intermediate steps are driven by natural selection, or how contingent the outcome is on steps along the way. Meyer et al. (p. 428; see the Perspective by Thompson) answer these questions for a case in which phage lambda evolved the ability to infect its host Escherichia coli through a novel receptor. This shift required four mutations, which accumulated under natural selection in concert with coevolution of the host. However, when Tenaillon et al. (p. 457) exposed 115 lines of E. coli to high temperature and sequenced them, adaptation occurred through many different genetic paths, showing parallelism at the level of genes and interacting protein complexes, but only rarely at the nucleotide level. Thus, epistasis—nonadditive genetic interaction—is likely to play an important part in the process of adaptation to this environment. Replicate Escherichia coli lines show multiple convergent adaptations via different mutations in response to high temperature. To estimate the number and diversity of beneficial mutations, we experimentally evolved 115 populations of Escherichia coli to 42.2°C for 2000 generations and sequenced one genome from each population. We identified 1331 total mutations, affecting more than 600 different sites. Few mutations were shared among replicates, but a strong pattern of convergence emerged at the level of genes, operons, and functional complexes. Our experiment uncovered a set of primary functional targets of high temperature, but we estimate that many other beneficial mutations could contribute to similar adaptive outcomes. We inferred the pervasive presence of epistasis among beneficial mutations, which shaped adaptive trajectories into at least two distinct pathways involving mutations either in the RNA polymerase complex or the termination factor rho.


Genome Research | 2009

Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression

Jesse D. Hollister; Brandon S. Gaut

Transposable elements (TEs) are ubiquitous genomic parasites. The deleterious consequences of the presence and activity of TEs have fueled debate about the evolutionary forces countering their expansion. Purifying selection is thought to purge TE insertions from the genome, and TE sequences are targeted by hosts for epigenetic silencing. However, the interplay between epigenetic and evolutionary forces countering TE expansion remains unexplored. Here we analyze genomic, epigenetic, and population genetic data from Arabidopsis thaliana to yield three observations. First, gene expression is negatively correlated with the density of methylated TEs. Second, the signature of purifying selection is detectable for methylated TEs near genes but not for unmethylated TEs or for TEs far from genes. Third, TE insertions are distributed by age and methylation status, such that older, methylated TEs are farther from genes. Based on these observations, we present a model in which host silencing of TEs near genes has deleterious effects on neighboring gene expression, resulting in the preferential loss of methylated TEs from gene-rich chromosomal regions. This mechanism implies an evolutionary tradeoff in which the benefit of TE silencing imposes a fitness cost via deleterious effects on the expression of nearby genes.


The Plant Cell | 1998

Xa21D Encodes a Receptor-like Molecule with a Leucine-Rich Repeat Domain That Determines Race-Specific Recognition and Is Subject to Adaptive Evolution

Guo-Liang Wang; Wen-Yuan Song; Steve Sideris; Lili Chen; Li-Ya Pi; Shiping Zhang; Zhen Zhang; Claude M. Fauquet; Brandon S. Gaut; Maureen C. Whalen; Pamela C. Ronald

The rice Xa21 gene confers resistance to Xanthomonas oryzae pv oryzae in a race-specific manner. Analysis of the inheritance patterns and resistance spectra of transgenic plants carrying six Xa21 gene family members indicated that one member, designated Xa21D, displayed a resistance spectrum identical to that observed for Xa21 but conferred only partial resistance. Xa21D encodes a receptor-like protein carrying leucine-rich repeat (LRR) motifs in the presumed extracellular domain. The Xa21D transcript terminates shortly after the stop codon introduced by the retrotransposon Retrofit. Comparison of nucleotide substitutions in the LRR coding regions of Xa21 and Xa21D provided evidence of adaptive selection. Both functional and evolutionary evidence indicates that the Xa21D LRR domain controls race-specific pathogen recognition.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genetic diversity and selection in the maize starch pathway

Sherry R. Whitt; Larissa M. Wilson; Maud I. Tenaillon; Brandon S. Gaut; Edward S. Buckler

Maize is both phenotypically and genetically diverse. Sequence studies generally confirm the extensive genetic variability in modern maize is consistent with a lack of selection. For more than 6,000 years, Native Americans and modern breeders have exploited the tremendous genetic diversity of maize (Zea mays ssp. mays) to create the highest yielding grain crop in the world. Nonetheless, some loci have relatively low levels of genetic variation, particularly loci that have been the target of artificial selection, like c1 and tb1. However, there is limited information on how selection may affect an agronomically important pathway for any crop. These pathways may retain the signature of artificial selection and may lack genetic variation in contrast to the rest of the genome. To evaluate the impact of selection across an agronomically important pathway, we surveyed nucleotide diversity at six major genes involved in starch metabolism and found unusually low genetic diversity and strong evidence of selection. Low diversity in these critical genes suggests that a paradigm shift may be required for future maize breeding. Rather than relying solely on the diversity within maize or on transgenics, future maize breeding would perhaps benefit from the incorporation of alleles from maizes wild relatives.


The Plant Cell | 1998

Receptor-like Genes in the Major Resistance Locus of Lettuce Are Subject to Divergent Selection

Blake C. Meyers; Katherine A. Shen; Pejaman Rohani; Brandon S. Gaut; Richard W. Michelmore

Disease resistance genes in plants are often found in complex multigene families. The largest known cluster of disease resistance specificities in lettuce contains the RGC2 family of genes. We compared the sequences of nine full-length genomic copies of RGC2 representing the diversity in the cluster to determine the structure of genes within this family and to examine the evolution of its members. The transcribed regions range from at least 7.0 to 13.1 kb, and the cDNAs contain deduced open reading frames of ~5.5 kb. The predicted RGC2 proteins contain a nucleotide binding site and irregular leucine-rich repeats (LRRs) that are characteristic of resistance genes cloned from other species. Unique features of the RGC2 gene products include a bipartite LRR region with >40 repeats. At least eight members of this family are transcribed. The level of sequence diversity between family members varied in different regions of the gene. The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitutions was lowest in the region encoding the nucleotide binding site, which is the presumed effector domain of the protein. The LRR-encoding region showed an alternating pattern of conservation and hypervariability. This alternating pattern of variation was also found in all comparisons within families of resistance genes cloned from other species. The Ka/Ks ratios indicate that diversifying selection has resulted in increased variation at these codons. The patterns of variation support the predicted structure of LRR regions with solvent-exposed hypervariable residues that are potentially involved in binding pathogen-derived ligands.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Plant domestication, a unique opportunity to identify the genetic basis of adaptation.

Jeffrey Ross-Ibarra; Peter L. Morrell; Brandon S. Gaut

Despite the fundamental role of plant domestication in human history and the critical importance of a relatively small number of crop plants to modern societies, we still know little about adaptation under domestication. Here we focus on efforts to identify the genes responsible for adaptation to domestication. We start from a historical perspective, arguing that Darwins conceptualization of domestication and unconscious selection provides valuable insight into the evolutionary history of crops and also provides a framework to evaluate modern methods used to decipher the genetic mechanisms underlying phenotypic change. We then review these methods, framing the discussion in terms of the phenotype–genotype hierarchy. Top-down approaches, such as quantitative trait locus and linkage disequilibrium mapping, start with a phenotype of interest and use genetic analysis to identify candidate genes. Bottom-up approaches, alternatively, use population genetic analyses to identify potentially adaptive genes and then rely on standard bioinformatics and reverse genetic tools to connect selected genes to a phenotype. We discuss the successes, advantages, and challenges of each, but we conclude that bottom-up approaches to understanding domestication as an adaptive process hold greater promise both for the study of adaptation and as a means to identify genes that contribute to agronomically important traits.

Collaboration


Dive into the Brandon S. Gaut's collaboration.

Top Co-Authors

Avatar

John Doebley

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis E. Eguiarte

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shohei Takuno

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward S. Buckler

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge