Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Branislav M. Marcic is active.

Publication


Featured researches published by Branislav M. Marcic.


Hypertension | 1998

N-Domain–Specific Substrate and C-Domain Inhibitors of Angiotensin-Converting Enzyme: Angiotensin-(1–7) and Keto-ACE

Peter A. Deddish; Branislav M. Marcic; Herbert L. Jackman; Huan Zhu Wang; Randal A. Skidgel; Ervin G. Erdös

We used the isolated N- and C-domains of the angiotensin 1-converting enzyme (N-ACE and C-ACE; ACE; kininase II) to investigate the hydrolysis of the active 1-7 derivative of angiotensin (Ang) II and inhibition by 5-S-5-benzamido-4-oxo-6-phenylhexanoyl-L-proline (keto-ACE). Ang-(1-7) is both a substrate and an inhibitor; it is cleaved by N-ACE at approximately one half the rate of bradykinin but negligibly by C-ACE. It inhibits C-ACE, however, at an order of magnitude lower concentration than N-ACE; the IC50 of C-ACE with 100 micromol/L Ang I substrate was 1.2 micromol/L and the Ki was 0.13. While searching for a specific inhibitor of a single active site of ACE, we found that keto-ACE inhibited bradykinin and Ang I hydrolysis by C-ACE in approximately a 38- to 47-times lower concentration than by N-ACE; IC50 values with C-ACE were 0.5 and 0.04 micromol/L. Furthermore, we investigated how Ang-(1-7) acts via bradykinin and the involvement of its B2 receptor. Ang-(1-7) was ineffective directly on the human bradykinin B2 receptor transfected and expressed in Chinese hamster ovary cells. However, Ang-(1-7) potentiated arachidonic acid release by an ACE-resistant bradykinin analogue (1 micromol/L), acting on the B2 receptor when the cells were cotransfected with cDNAs of both B2 receptor and ACE and the proteins were expressed on the plasma membrane of Chinese hamster ovary cells. Thus like other ACE inhibitors, Ang-(1-7) can potentiate the actions of a ligand of the B2 receptor indirectly by binding to the active site of ACE and independent of blocking ligand hydrolysis. This potentiation of kinins at the receptor level can explain some of the well-documented kininlike actions of Ang-(1-7).


Circulation Research | 1997

Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors : The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells

Richard D. Minshall; Fulong Tan; Fumiaki Nakamura; Sara F. Rabito; Robert P. Becker; Branislav M. Marcic; Ervin G. Erdös

Part of the beneficial effects of angiotensin I-converting enzyme (ACE) inhibitors are due to augmenting the actions of bradykinin (BK). We studied this effect of enalaprilat on the binding of [3H]BK to Chinese hamster ovary (CHO) cells stably transfected to express the human BK B2 receptor alone (CHO-3B) or in combination with ACE (CHO-15AB). In CHO-15AB cells, enalaprilat (1 mumol/L) increased the total number of low-affinity [3H]BK binding sites on the cells at 37 degrees C, but not at 4 degrees C, from 18.4 +/- 4.3 to 40.3 +/- 11.9 fmol/10(6) cells (P < .05; Kd, 2.3 +/- 0.8 and 5.9 +/- 1.3 nmol/L; n = 4). Enalaprilat preserved a portion of the receptors in high-affinity conformation (Kd, 0.17 +/- 0.08 nmol/L; 8.1 +/- 0.9 fmol/10(6) cells). Enalaprilat decreased the IC50 of [Hyp3-Tyr(Me)8]BK, the BK analogue more resistant to ACE, from 3.2 +/- 0.8 to 0.41 +/- 0.16 nmol/L (P < .05, n = 3). The biphasic displacement curve of the binding of [3H]BK also suggested the presence of high-affinity BK binding sites. Enalaprilat (5 nmol to 1 mumol/L) potentiated the release of [3H]arachidonic acid and the liberation of inositol 1,4,5-trisphosphate (IP3) induced by BK and [Hyp3-Tyr(Me)8]BK. Moreover, enalaprilat (1 mumol/L) completely and immediately restored the response of the B2 receptor, desensitized by the agonist (1 mumol/L [Hyp3-Tyr(Me)8]BK); this effect was blocked by the antagonist, HOE 140. Finally, enalaprilat, but not the prodrug enalapril, decreased internalization of the receptor from 70 +/- 9% to 45 +/- 9% (P < .05, n = 7). In CHO-3B cells, enalaprilat was ineffective. ACE inhibitors in the presence of both the B2 receptor and ACE enhance BK binding, protect high-affinity receptors, block receptor desensitization, and decrease internalization, thereby potentiating BK beyond blocking its hydrolysis.


Hypertension | 1999

Enhancement of Bradykinin and Resensitization of Its B2 Receptor

Branislav M. Marcic; Peter A. Deddish; Herbert L. Jackman; Ervin G. Erdös

We studied the enhancement of the effects of bradykinin B2 receptor agonists by agents that react with active centers of angiotensin-converting enzyme (ACE) independent of enzymatic inactivation. The potentiation and the desensitization and resensitization of B2 receptor were assessed by measuring [3H]arachidonic acid release and [Ca2+]i mobilization in Chinese hamster ovary cells transfected to express human ACE and B2 receptor, or in endothelial cells with constitutively expressed ACE and receptor. Administration of bradykinin or its ACE-resistant analogue desensitized the receptor, but it was resensitized (arachidonic acid release or [Ca2+]i mobilization) by agents such as enalaprilat (1 micromol/L). Enalaprilat was inactive in the absence of ACE expression. La3+ (100 micromol/L) inhibited the apparent resensitization, probably by blocking the entry of extracellular calcium. Enalaprilat resensitized the receptor via ACE to release arachidonic acid by bradykinin at a lower concentration (5 nmol/L) than required to mobilize [Ca2+]i (1 micromol/L). Monoclonal antibodies inhibiting the ACE N-domain active center and polyclonal antiserum potentiated bradykinin. The snake venom peptide BPP5a and metabolites of angiotensin and bradykinin (angiotensin-[1-9], angiotensin-[1-7], bradykinin-[1-8]; 1 micromol/L) enhanced arachidonic acid release by bradykinin. Angiotensin-(1-9) and -(1-7) also resensitized the receptor. Enalaprilat potentiated the bradykinin effect in cells expressing a mutant ACE with a single N-domain active site. Agents that reacted with a single active site, on the N-domain or on the C-domain, potentiated bradykinin not by blocking its inactivation but by inducing crosstalk between ACE and the receptor. Enalaprilat enhanced signaling via ACE by Galphai in lower concentration than by Galphaq-coupled receptor.


Hypertension | 2002

Angiotensin 1-9 and 1-7 Release in Human Heart Role of Cathepsin A

Herbert L. Jackman; Malek G. Massad; Marin Sekosan; Fulong Tan; Viktor Brovkovych; Branislav M. Marcic; Ervin G. Erdös

Human heart tissue enzymes cleave angiotensin (Ang) I to release Ang 1-9, Ang II, or Ang 1-7. In atrial homogenate preparations, cathepsin A (deamidase) is responsible for 65% of the liberated Ang 1-9. Ang 1-7 was released (88% to 100%) by a metallopeptidase, as established with peptidase inhibitors. Ang II was liberated to about equal degrees by ACE and chymase-type enzymes. Cathepsin A’s presence in heart tissue was also proven because it deamidated enkephalinamide substrate by immunoprecipitation of cathepsin A with antiserum to human recombinant enzyme and by immunohistochemistry. In immunohistochemistry, cathepsin A was detected in myocytes of atrial tissue. The products of Ang I cleavage, Ang 1-9 and Ang 1-7, potentiated the effect of an ACE-resistant bradykinin analog and enhanced kinin effect on the B2 receptor in Chinese hamster ovary cells transfected to express human ACE and B2 (CHO/AB), and in human pulmonary arterial endothelial cells. Ang 1-9 and 1-7 augmented arachidonic acid and nitric oxide (NO) release by kinin. Direct assay of NO liberation by bradykinin from endothelial cells was potentiated at 10 nmol/L concentration, 2.4-fold (Ang 1-9) and 2.1-fold (Ang 1-7); in higher concentrations, Ang 1-9 was significantly more active than Ang 1-7. Both peptides had traces of activity in the absence of bradykinin. Ang 1-9 and Ang 1-7 potentiated bradykinin action on the B2 receptor by raising arachidonic acid and NO release at much lower concentrations than their 50% inhibition concentrations (IC50s) with ACE. They probably induce conformational changes in the ACE/B2 receptor complex via interaction with ACE.


Journal of Biological Chemistry | 2000

Replacement of the Transmembrane Anchor in Angiotensin I-converting Enzyme (ACE) with a Glycosylphosphatidylinositol Tail Affects Activation of the B2 Bradykinin Receptor by ACE Inhibitors

Branislav M. Marcic; Peter A. Deddish; Randal A. Skidgel; Ervin G. Erdös; Richard D. Minshall; Fulong Tan

To investigate further the relationship of angiotensin I-converting enzyme (ACE) inhibitors to activation of the B2 bradykinin (BK) receptor, we transfected Chinese hamster ovary cells to stably express the human receptor and either wild-type ACE (WT-ACE), an ACE construct with most of the cytosolic portion deleted (Cyt-del-ACE), or ACE with a glycosylphosphatidylinositol (GPI) anchor replacing the transmembrane and cytosolic domains (GPI-ACE). BK or its ACE-resistant analogue were the agonists. All activities (arachidonic acid release and calcium mobilization) were blocked by the B2 antagonist HOE 140. B2 was desensitized by repeated administration of BK but resensitized to agonist by ACE inhibitors in the cells expressing both B2 and either WT-ACE or Cyt-del-ACE. In GPI-ACE expressing cells, the B2 receptor was still activated by the agonists, but ACE inhibitors did not resensitize. Pretreatment with filipin returned the sensitivity to inhibitors. In immunocytochemistry, GPI-ACE showed patchy, uneven distribution on the plasma membrane that was restored by filipin. Thus, ACE inhibitors were inactive as long as GPI-ACE was sequestered in cholesterol-rich membrane domains. WT-ACE and B2 receptor in Chinese hamster ovary cells co-immunoprecipitated with antibody to receptor, suggesting an interaction on the cell membrane. ACE inhibitors augment BK effects on receptors indirectly only when enzyme and receptor molecules are sterically close, possibly forming a heterodimer.


Trends in Endocrinology and Metabolism | 1999

Potentiation of bradykinin actions by ACE inhibitors

Ervin G. Erdös; Peter A. Deddish; Branislav M. Marcic

Angiotensin I-converting enzyme (kininase II; ACE) inhibitors, antibodies to ACE and slowly cleaved substrates of ACE potentiate the effect of bradykinin and its analogs on their B2 receptors independently of blocking peptide metabolism. ACE inhibitors also resensitized the receptors desensitized by the ligand (tachyphylaxis). The studies were performed on isolated organs and cells co-transfected with the receptor and the enzyme or constitutively expressing them. This enhancement of the effect of B2 ligands is attributed to a crosstalk between the enzyme and the receptor, and not to a direct action on the receptors. It might reflect some of the local activities of ACE inhibitors.


Biological Chemistry | 2001

Kinins, receptors, kininases and inhibitors--where did they lead us?

Ervin G. Erdös; Branislav M. Marcic

Abstract Based on studies presented here and other published experiments performed with surviving tissue preparations, with transfected cells and with cells that constitutively express the human angiotensin I converting enzyme ACE and B2 receptors, we concluded the following: ACE inhibitors and other endogenous peptides that react with the active site of ACE potentiate the effect of bradykinin and its ACE resistant peptide congeners on the B2 receptor. They also resensitize receptors which had been desensitized by the agonist. ACE and bradykinin receptors have to be sterically close, possibly forming a heterodimer, for the ACE inhibitors to induce an allosteric modification on the receptor. When ACE inhibitors augment bradykinin effects, they reduce the phosphorylation of the B2 receptor. The primary actions of bradykinin on the receptor are not affected by protein kinase C or phosphatase inhibitors, but the potentiation of bradykinin or the resensitization of the receptor by ACE inhibitors are abolished by the same inhibitors. The results with protein kinase C and phosphatase inhibitors indicate that another intermediate protein may be involved in the processes of signaling induced by ACE inhibitors, and that ACE inhibitors affect the signal transduction pathway triggered by bradykinin on the B2 receptor.


Molecular Pharmacology | 2000

Human Bradykinin B2 Receptor Is Activated by Kallikrein and Other Serine Proteases

Claudie Hecquet; Fulong Tan; Branislav M. Marcic; Ervin G. Erdös


Journal of Pharmacology and Experimental Therapeutics | 2000

Protein Kinase C and Phosphatase Inhibitors Block the Ability of Angiotensin I-Converting Enzyme Inhibitors to Resensitize the Receptor to Bradykinin without Altering the Primary Effects of Bradykinin

Branislav M. Marcic; Ervin G. Erdös


Hypertension | 2002

Neprilysin Inhibitors Potentiate Effects of Bradykinin on B2 Receptor

Peter A. Deddish; Branislav M. Marcic; Fulong Tan; Herbert L. Jackman; Zhenlong Chen; Ervin G. Erdös

Collaboration


Dive into the Branislav M. Marcic's collaboration.

Top Co-Authors

Avatar

Ervin G. Erdös

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Fulong Tan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Peter A. Deddish

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Herbert L. Jackman

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Randal A. Skidgel

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Richard D. Minshall

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Claudie Hecquet

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Fumiaki Nakamura

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Huan Zhu Wang

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Malek G. Massad

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge