Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Branka Vulesevic is active.

Publication


Featured researches published by Branka Vulesevic.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors.

Kenneth R. Olson; Michael J. Healy; Zhaohong Qin; Nini Skovgaard; Branka Vulesevic; Douglas W. Duff; Nathan L. Whitfield; Guangdong Yang; Rui Wang; Steve F. Perry

O2 chemoreceptors elicit cardiorespiratory reflexes in all vertebrates, but consensus on O2-sensing signal transduction mechanism(s) is lacking. We recently proposed that hydrogen sulfide (H2S) metabolism is involved in O2 sensing in vascular smooth muscle. Here, we examined the possibility that H2S is an O2 sensor in trout chemoreceptors where the first pair of gills is a primary site of aquatic O2 sensing and the homolog of the mammalian carotid body. Intrabuccal injection of H2S in unanesthetized trout produced a dose-dependent bradycardia and increased ventilatory frequency and amplitude similar to the hypoxic response. Removal of the first, but not second, pair of gills significantly inhibited H2S-mediated bradycardia, consistent with the loss of aquatic chemoreceptors. mRNA for H2S-synthesizing enzymes, cystathionine beta-synthase and cystathionine gamma-lyase, was present in branchial tissue. Homogenized gills produced H2S enzymatically, and H2S production was inhibited by O2, whereas mitochondrial H2S consumption was O2 dependent. Ambient hypoxia did not affect plasma H2S in unanesthetized trout, but produced a PO2-dependent increase in a sulfide moiety suggestive of increased H2S production. In isolated zebrafish neuroepithelial cells, the putative chemoreceptive cells of fish, both hypoxia and H2S, produced a similar approximately 10-mV depolarization. These studies are consistent with H2S involvement in O2 sensing/signal transduction pathway(s) in chemoreceptive cells, as previously demonstrated in vascular smooth muscle. This novel mechanism, whereby H2S concentration ([H2S]) is governed by the balance between constitutive production and oxidation, tightly couples tissue [H2S] to PO2 and may provide an exquisitely sensitive, yet simple, O2 sensor in a variety of tissues.


Tissue Engineering Part A | 2010

A Collagen–Chitosan Hydrogel for Endothelial Differentiation and Angiogenesis

Chao Deng; Pingchuan Zhang; Branka Vulesevic; Drew Kuraitis; Fengfu Li; Ann Fook Yang; May Griffith; Marc Ruel; Erik J. Suuronen

Cell therapy for the treatment of cardiovascular disease has been hindered by low cell engraftment, poor survival, and inadequate phenotype and function. In this study, we added chitosan to a previously developed injectable collagen matrix, with the aim of improving its properties for cell therapy and neovascularization. Different ratios of collagen and chitosan were mixed and chemically crosslinked to produce hydrogels. Swell and degradation assays showed that chitosan improved the stability of the collagen hydrogel. In culture, endothelial cells formed significantly more vascular-like structures on collagen–chitosan than collagen-only matrix. While the differentiation of circulating progenitor cells to CD31+ cells was equal on all matrices, vascular endothelial-cadherin expression was increased on the collagen–chitosan matrix, suggesting greater maturation of the endothelial cells. In addition, the collagen–chitosan matrix supported a significantly greater number of CD133+ progenitor cells than the collagen-only matrix. In vivo, subcutaneously implanted collagen–chitosan matrices stimulated greater vascular growth and recruited more von Willebrand factor (vWF+) and CXCR4+ endothelial/angiogenic cells than the collagen-only matrix. These results indicate that the addition of chitosan can improve the physical properties of collagen matrices, and enhance their ability to support endothelial cells and angiogenesis for use in cardiovascular tissue engineering applications.


The Journal of Experimental Biology | 2006

Chemoreceptor plasticity and respiratory acclimation in the zebrafish Danio rerio.

Branka Vulesevic; Brian McNeill; S. F. Perry

SUMMARY The goals of this study were to assess the respiratory consequences of exposing adult zebrafish Danio rerio to chronic changes in water gas composition (hypoxia, hyperoxia or hypercapnia) and to determine if any ensuing effects could be related to morphological changes in branchial chemoreceptors. To accomplish these goals, we first modified and validated an established non-invasive technique for continuous monitoring of breathing frequency and relative breathing amplitude in adult fish. Under normal conditions 20% of zebrafish exhibited an episodic breathing pattern that was composed of breathing and non-breathing (pausing/apneic) periods. The pausing frequency was reduced by acute hypoxia (PwO2<130 mmHg) and increased by acute hyperoxia (PwO2>300 mmHg), but was unaltered by acute hypercapnia. Fish were exposed for 28 days to hyperoxia (PwO2>350 mmHg), or hypoxia (PwO2=30 mmHg) or hypercapnia (PwCO2=9 mmHg). Their responses to acute hypoxia or hypercapnia were then compared to the response of control fish kept for 28 days in normoxic and normocapnic water. In control fish, the ventilatory response to acute hypoxia consisted of an increase in breathing frequency while the response to acute hypercapnia was an increase in relative breathing amplitude. The stimulus promoting the hyperventilation during hypercapnia was increased PwCO2 rather than decreased pH. Exposure to prolonged hyperoxia decreased the capacity of fish to increase breathing frequency during hypoxia and prevented the usual increase in breathing amplitude during acute hypercapnia. In fish previously exposed to hyperoxia, episodic breathing continued during acute hypoxia until PwO2 had fallen below 70 mmHg. In fish chronically exposed to hypoxia, resting breathing frequency was significantly reduced (from 191±12 to 165±16 min–1); however, the ventilatory responses to hypoxia and hypercapnia were unaffected. Long-term exposure of fish to hypercapnic water did not markedly modify the breathing response to acute hypoxia and modestly blunted the response to hypercapnia. To determine whether branchial chemoreceptors were being influenced by long-term acclimation, all four groups of fish were acutely exposed to increasing doses of the O2 chemoreceptor stimulant, sodium cyanide, dissolved in inspired water. Consistent with the blunting of the ventilatory response to hypoxia, the fish pre-exposed to hyperoxia also exhibited a blunted response to NaCN. Pre-exposure to hypoxia was without effect whereas prior exposure to hypercapnia increased the ventilatory responses to cyanide. To assess the impact of acclimation to varying gas levels on branchial O2 chemoreceptors, the numbers of neuroepithelial cells (NECs) of the gill filament were quantified using confocal immunofluorescence microscopy. Consistent with the blunting of reflex ventilatory responses, fish exposed to chronic hyperoxia exhibited a significant decrease in the density of NECs from 36.8±2.8 to 22.7±2.3 filament–1.


The Journal of Experimental Biology | 2009

The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae.

M. Bayaa; Branka Vulesevic; Andrew J. Esbaugh; Marvin H. Braun; Marc Ekker; Martin Grosell; S. F. Perry

SUMMARY After demonstrating phylogenetic relatedness to orthologous mammalian genes, tools were developed to investigate the roles of three members (A3, A4 and A6c) of the SLC26 anion exchange gene family in Cl– uptake and HCO3 excretion in embryos and larvae of zebrafish (Danio rerio). Whole-mount in situ hybridization revealed the presence of SLC26 mRNA in gill primordia, mesonephros and heart (slc26a3 and a4 only) at 5–9 days postfertilization (d.p.f.). SLC26A3 protein was highly expressed in lateral line neuromasts and within the gill, was localized to a sub-population of epithelial cells, which often (but not always) coexpressed Na+/K+-ATPase. SLC26 mRNA levels increased with developmental age, peaking at 5–10 d.p.f.; the largest increases in rates of Cl– uptake (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(J_{\mathrm{in}}^{\mathrm{Cl}^{-}}\) \end{document}) preceded the mRNA spike, occurring at 2–5 d.p.f. Raising zebrafish in water with a low [Cl–] caused marked increases in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(J_{\mathrm{in}}^{\mathrm{Cl}^{-}}\) \end{document} at 3–10 d.p.f. and was associated with increased levels of SLC26 mRNA. Raising fish in water of high [Cl–] was without effect on \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(J_{\mathrm{in}}^{\mathrm{Cl}^{-}}\) \end{document} or SLC26 transcript abundance. Selective gene knockdown using morpholino antisense oligonucleotides demonstrated a significant role for SLC26A3 in Cl– uptake in larval fish raised in control water and roles for A3, A4 and A6c in fish raised in water with low [Cl–]. Prolonged (7 days) or acute (24 h) exposure of fish to elevated (2 or 5 mmol l–1) ambient [HCO3–] caused marked increases in Cl– uptake when determined in water of normal [HCO3–] that were accompanied by elevated levels of SLC26 mRNA. The increases in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(J_{\mathrm{in}}^{\mathrm{Cl}^{-}}\) \end{document} associated with high ambient [HCO3–] were not observed in the SLC26 morphants (significant only at 5 mmol l–1 HCO3– for A4 and 2 mmol l–1 HCO3– for A6c). Net base excretion was markedly inhibited in the slc26a3 and a6c morphants thereby implicating these genes in Cl–/HCO3– exchange. The results suggest that under normal conditions, Cl– uptake in zebrafish larvae is mediated by SLC26A3 Cl–/HCO3– exchangers but under conditions necessitating higher rates of high affinity Cl– uptake, SlC26A4 and SLC26A6c may assume a greater role.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Evidence that SLC26 anion transporters mediate branchial chloride uptake in adult zebrafish (Danio rerio)

Steve F. Perry; Branka Vulesevic; Martin Grosell; M. Bayaa

Experiments were performed to test the hypothesis that three members of the SLC26 anion transporter gene family (SLC26a3, A4, and A6; hereafter termed za3, za4, and za6) mediate branchial Cl(-)/HCO(3)(-) exchange in adult zebrafish (Danio rerio). Real-time RT-PCR demonstrated that the gill expressed relatively high levels of za6 mRNA; za3 and za4 mRNA, while present, were less abundant. Also, za4 and za6 were expressed at relatively high levels in the kidney. The results of in situ hybridization or immunocytochemistry (za3 only) experiments performed on gill sections revealed that the SLC26 transporters were predominantly expressed on the filament epithelium (especially within the interlamellar regions) and to a lesser extent on the lamellar epithelium at the base of lamellae. This distribution pattern suggests that the SLC26 anion transporters are localized to mitochondrion-rich cells (ionocytes). Transferring fish to water containing low [Cl(-)] (0.02 mmol/l) resulted in significant increases in branchial SLC26 mRNA expression after 5-10 days of exposure relative to fish raised in normal water [Cl(-)] (0.4 mmol/l); transferring fish to Cl(-)-enriched water (2.0 mmol/l) was without effect on mRNA levels. Transferring fish to water containing elevated levels of NaHCO(3) (10-12.5 mmol/l) caused marked increases in branchial SLC26 mRNA expression between 3 and 10 days of transfer that was associated with a significant 40% increase in Cl(-) uptake (as measured upon return to normal water after 7 days). A decrease in whole body net acid excretion (equivalent to an increase in net base excretion) in fish previously maintained in high [NaHCO(3)] water, concurrent with increases in Cl(-) uptake and SLC26 mRNA levels, suggests a role for these anion transporters in Cl(-) uptake and acid-base regulation owing to their Cl(-)/HCO(3)(-) exchange activities.


Journal of Molecular and Cellular Cardiology | 2011

Ex vivo generation of a highly potent population of circulating angiogenic cells using a collagen matrix

Drew Kuraitis; Chenchen Hou; Yan Zhang; Branka Vulesevic; Tanja Sofrenovic; Daniel McKee; Zahra Sharif; Marc Ruel; Erik J. Suuronen

Biomaterials that have the ability to augment angiogenesis are highly sought-after for applications in regenerative medicine, particularly for revascularization of ischemic and infarcted tissue. We evaluated the culture of human circulating angiogenic cells (CAC) on collagen type I-based matrices, and compared this to traditional selective-adhesion cultures on fibronectin. Culture on a collagen matrix supported the proliferation of CD133(+) and CD34(+)CD133(+) CACs. When subjected to serum starvation, the matrix conferred a resistance to cell death for CD34(+) and CD133(+) progenitors and increased phosphorylation of Akt. After 4days of culture, phenotypically enriched populations of endothelial cells (CD31(+)CD144(+)) and progenitor cells (CD34(+)CD133(+)) emerged. Culture on matrix upregulated the phosphorylation and activation of ERK1/2 pathway members, and matrix-cultured cells also had an enhanced functional capacity for adhesion and invasion. These functional improvements were abrogated when cultured in the presence of ERK inhibitors. The formation of vessel-like structures in an angiogenesis assay was augmented with matrix-cultured cells, which were also more likely to physically associate with such structures compared to CACs taken from culture on fibronectin. In vivo, treatment with matrix-cultured cells increased the size and density of arterioles, and was superior at restoring perfusion in a mouse model of hindlimb ischemia, compared to fibronectin-cultured cell treatment. This work suggests that a collagen-based matrix, as a novel substrate for CAC culture, possesses the ability to enrich endothelial and angiogenic populations and lead to clinically relevant functional enhancements.


Physiological and Biochemical Zoology | 2005

Circulating catecholamines and cardiorespiratory responses in hypoxic lungfish (Protopterus dolloi): a comparison of aquatic and aerial hypoxia.

S. F. Perry; Kathleen M. Gilmour; Branka Vulesevic; Brian McNeill; Shit F. Chew; Y. K. Ip

Circulating catecholamine levels and a variety of cardiorespiratory variables were monitored in cannulated bimodally breathing African lungfish (Protopterus dolloi) exposed to aquatic or aerial hypoxia. Owing to the purported absence of external branchial chemoreceptors in lungfish and the minor role played by the gill in O2 uptake, it was hypothesized that plasma catecholamine levels would increase only during exposure of fish to aerial hypoxia. The rapid induction of aquatic hypoxia (final PWo2 = 25.9 ± 1.6 mmHg) did not affect the levels of adrenaline (A) or noradrenaline (NA) within the plasma. Similarly, none of the measured cardiorespiratory variables—including heart rate (fH), blood pressure, air‐breathing frequency (fV), O2 consumption (Mo2), CO2 excretion (Mco2), or blood gases—were influenced by acute aquatic hypoxia. In contrast, however, the rapid induction of aerial hypoxia (inspired Po2 = 46.6 ± 3.3 mmHg) caused a marked increase in the circulating levels of A (from 7.9 ± 2.0 to 18.8 ± 6.1 nmol L−1) and NA (from 7.7 ± 2.2 to 19.7 ± 6.3 nmol L−1) that was accompanied by significant deceases in Mo2, arterial Po2 (Pao2), and arterial O2 concentration (Cao2). Air‐breathing frequency was increased (by approximately five breaths per hour) during aerial hypoxia and presumably contributed to the observed doubling of pulmonary Mco2 (from 0.25 ± 0.04 to 0.49 ± 0.07 mmol kg−1 h−1); fH and blood pressure were unaffected by aerial hypoxia. An in situ perfused heart preparation was used to test the possibility that catecholamine secretion from cardiac chromaffin cells was being activated by a direct localized effect of hypoxia. Catecholamine secretion from the chromaffin cells of the heart, while clearly responsive to a depolarizing concentration of KCl (60 mmol L−1), was unaffected by the O2 status of the perfusion fluid. The results of this study demonstrate that P. dolloi is able to mobilize stored catecholamines and increase fV during exposure to aerial hypoxia while remaining unresponsive to aquatic hypoxia. Thus, unlike in exclusively water‐breathing teleosts, P. dolloi would appear to rely solely on internal/airway O2 chemoreceptors for initiating catecholamine secretion and cardiorespiratory responses.


The Journal of Experimental Biology | 2009

Urea transporter and glutamine synthetase regulation and localization in gulf toadfish gill

M. Danielle McDonald; Branka Vulesevic; Steve F. Perry; Patrick J. Walsh

SUMMARY The goal of the present study was to investigate the role of circulating cortisol and urea in the transcriptional regulation of branchial glutamine synthetase (GS), which incorporates NH3 into glutamate to form glutamine, and the toadfish urea transporter, tUT, which is involved in urea excretion across the gill of the gulf toadfish. GS (of which there are two isoforms, LGS and GGS) and tUT mRNA expression and activity were measured in toadfish exposed to treatments that would induce variable stress responses. In addition, the role of circulating urea in tUT regulation was investigated by infusing toadfish with urea alone or in combination with intraperitoneal injection of RU486, a corticosteroid type II receptor antagonist. There was a 4.8-fold upregulation in the mRNA expression of the gill-specific GS isoform (GGS) in response to cortisol infusion and a similar upregulation in the more ubiquitous isoform (LGS). Furthermore, there was a significant 1.9-fold and 3.3-fold upregulation in the mRNA expression of the toadfish urea transporter, tUT, in response to stress through crowding or exogenous cortisol loading through infusion, respectively. In addition, tUT was found to have a urea-sensitive component to transcriptional regulation that was independent of circulating cortisol concentrations. However, the changes measured in mRNA expression of GGS, LGS and tUT did not correspond with changes in protein activity. To determine the cell type(s) involved in glutamine production and urea excretion, we attempted to localize GGS, LGS and tUT using in situ hybridization. This study is the first to show that GGS and tUT expression appear to occur in gill mitochondria-rich cells of toadfish, suggesting that these cells play a combined glutamine production and urea excretion role, which may have implications for predator avoidance.


The Journal of Experimental Biology | 2005

An investigation of the role of carbonic anhydrase in aquatic and aerial gas transfer in the African lungfish Protopterus dolloi.

S. F. Perry; Kathleen M. Gilmour; E. R. Swenson; Branka Vulesevic; Shit F. Chew; Y. K. Ip

SUMMARY Experiments were performed on bimodally breathing African lungfish Protopterus dolloi to examine the effects of inhibition of extracellular vs total (extracellular and intracellular) carbonic anhydrase (CA) activity on pulmonary and branchial/cutaneous gas transfer. In contrast to previous studies on Protopterus, which showed that the vast majority of CO2 is excreted into the water through the gill and/or skin whereas O2 uptake largely occurs via the lung, P. dolloi appeared to use the lung for the bulk of both O2 uptake (91.0±2.9%) and CO2 excretion (76.0±6.6%). In support of the lung as the more important site of CO2 transfer, aerial hypercapnia (PCO2=40 mmHg) caused a significant rise in partial pressure of arterial blood CO2 (PaCO2) whereas a similar degree of aquatic hypercapnia was without effect on PaCO2. Intravascular injection of low levels (1.2 mg kg-1) of the slowly permanent CA inhibitor, benzolamide, was without effect on red blood cell CA activity after 30 min, thus confirming its suitability as a short-term selective inhibitor of extracellular CA. Benzolamide treatment did not affect CO2 excretion, blood acid–base status or any other measured variable within the 30 min measurement period. Injection of the permeant CA inhibitor acetazolamide (30 mg kg-1) resulted in the complete inhibition of red cell CA activity within 10 min. However, CO2 excretion (measured for 2 h after injection) and arterial blood acid–base status (assessed for 24 h after injection) were unaffected by acetazolamide treatment. Intra-arterial injection of bovine CA (2 mg kg-1) caused a significant increase in overall CO2 excretion (from 0.41±0.03 to 0.58±0.03 mmol kg-1 h-1) and an increase in air breathing frequency (from 19.0±1.3 to 24.7±1.8 breaths min-1) that was accompanied by a slight, but significant, reduction in PaCO2 (from 21.6±1.6 to 19.6±1.8 mmHg). The findings of this study are significant because they (i) demonstrate that, unlike in other species of African lungfish that have been examined, the gill/skin is not the major route of CO2 excretion in P. dolloi, and (ii) suggest that CO2 excretion in Protopterus may be less reliant on carbonic anhydrase than in most other fish species.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Hydrogen sulfide stimulates catecholamine secretion in rainbow trout (Oncorhynchus mykiss)

Steve F. Perry; Brian McNeill; Eshay Elia; Ashish Nagpal; Branka Vulesevic

We tested the hypothesis that endogenously produced hydrogen sulfide (H(2)S) can potentially contribute to the adrenergic stress response in rainbow trout by initiating catecholamine secretion from chromaffin cells. During acute hypoxia (water Po(2) = 35 mmHg), plasma H(2)S levels were significantly elevated concurrently with a rise in circulating catecholamine concentrations. Tissues enriched with chromaffin cells (posterior cardinal vein and anterior kidney) produced H(2)S in vitro when incubated with l-cysteine. In both tissues, the production of H(2)S was eliminated by adding the cystathionine beta-synthase inhibitor, aminooxyacetate. Cystathionine beta-synthase and cystathionine gamma-lyase were cloned and sequenced and the results of real-time PCR demonstrated that with the exception of white muscle, mRNA for both enzymes was broadly distributed within the tissues that were examined. Electrical field stimulation of an in situ saline-perfused posterior cardinal vein preparation caused the appearance of H(2)S and catecholamines in the outflowing perfusate. Perfusion with the cholinergic receptor agonist carbachol (1 x 10(-6) M) or depolarizing levels of KCl (1 x 10(-2) M) caused secretion of catecholamines without altering H(2)S output, suggesting that neuronal excitation is required for H(2)S release. Addition of H(2)S (at concentrations exceeding 5 x 10(-7) M) to the perfusion fluid resulted in a marked stimulation of catecholamine secretion that was not observed when Ca(2+)-free perfusate was used. These data, together with the finding that H(2)S-induced catecholamine secretion was unaltered by the nicotinic receptor blocker hexamethonium, suggest that H(2)S is able to directly elicit catecholamine secretion via membrane depolarization followed by Ca(2+)-mediated exocytosis.

Collaboration


Dive into the Branka Vulesevic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge