Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Breanna N. Harris is active.

Publication


Featured researches published by Breanna N. Harris.


Frontiers in Behavioral Neuroscience | 2010

Toward an integrative understanding of social behavior: New models and new opportunities

Daniel T. Blumstein; Luis A. Ebensperger; Loren D. Hayes; Rodrigo A. Vásquez; Todd H. Ahern; Joseph R. Burger; Adam G. Dolezal; Andy Dosmann; Gabriela González-Mariscal; Breanna N. Harris; Emilio A. Herrera; Eileen A. Lacey; Jill M. Mateo; Lisa A. McGraw; Daniel E. Olazábal; Marilyn Ramenofsky; Samuel A. Sakhai; Wendy Saltzman; Cristina Sainz-Borgo; Mauricio Soto-Gamboa; Monica L. Stewart; Tina W. Wey; John C. Wingfield; Larry J. Young

Social interactions among conspecifics are a fundamental and adaptively significant component of the biology of numerous species. Such interactions give rise to group living as well as many of the complex forms of cooperation and conflict that occur within animal groups. Although previous conceptual models have focused on the ecological causes and fitness consequences of variation in social interactions, recent developments in endocrinology, neuroscience, and molecular genetics offer exciting opportunities to develop more integrated research programs that will facilitate new insights into the physiological causes and consequences of social variation. Here, we propose an integrative framework of social behavior that emphasizes relationships between ultimate-level function and proximate-level mechanism, thereby providing a foundation for exploring the full diversity of factors that underlie variation in social interactions, and ultimately sociality. In addition to identifying new model systems for the study of human psychopathologies, this framework provides a mechanistic basis for predicting how social behavior will change in response to environmental variation. We argue that the study of non-model organisms is essential for implementing this integrative model of social behavior because such species can be studied simultaneously in the lab and field, thereby allowing integration of rigorously controlled experimental manipulations with detailed observations of the ecological contexts in which interactions among conspecifics occur.


Hormones and Behavior | 2011

Acute effects of corticosterone injection on paternal behavior in California mouse (Peromyscus californicus) fathers.

Breanna N. Harris; Juan P. Perea-Rodriguez; Wendy Saltzman

Glucocorticoids are thought to mediate the disruption of parental behavior in response to acute and chronic stress. Previous research supports their role in chronic stress; however, no study has experimentally tested the effects of acute glucocorticoid elevation on paternal behavior. We tested the prediction that acute corticosterone (CORT) increases would decrease paternal behavior in California mouse fathers and would lead to longer-term effects on reproductive success, as even short-term increases in CORT have been shown to produce lasting effects on the hypothalamic-pituitary-adrenal axis. First-time fathers were injected with 30 mg/kg CORT, 60 mg/kg CORT or vehicle, or left unmanipulated. Interactions between the male and its pup(s) were recorded 1.5-2h after injection and scored for paternal and non-paternal behavior. Treatment groups were combined into control (unmanipulated + vehicle, n = 15) and CORT (30 mg/kg + 60 mg/kg, n = 16) for analysis based on resulting plasma CORT concentrations. CORT treatment did not alter paternal or non-paternal behaviors or any long-term measures (male body mass or temperature, pup growth rate, pup survival, interbirth interval, number or mass of pups born in the second litter). Fathers showed a significant rise in body mass at day 30 postpartum, followed by a decrease in body mass after the birth of the second litter; however, this pattern did not differ between the CORT and control groups. In summary, acute elevation of plasma CORT did not alter direct paternal behavior, body mass, or reproductive outcomes, suggesting that acute CORT elevation alone does not overtly disrupt paternal care in this biparental mammal.


Hormones and Behavior | 2013

Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus)

Breanna N. Harris; Trynke R. de Jong; Vanessa Yang; Wendy Saltzman

Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n=8), separation control (SC, n=7), or unmanipulated control (UC, n=8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in the day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, non-challenging laboratory conditions.


Physiological and Biochemical Zoology | 2012

Individual variation in paternal responses of virgin male California mice (Peromyscus californicus): behavioral and physiological correlates.

Trynke R. de Jong; Aniko Korosi; Breanna N. Harris; Juan Pablo Perea-Rodriguez; Wendy Saltzman

California mice Peromyscus californicus are a rodent species in which fathers provide extensive paternal care; however, behavioral responses of virgin males toward conspecific neonates vary from paternal behavior to tolerance to infanticide. Indirect evidence suggests that paternal responses might be influenced by social status potentially through increased stress and anxiety in subordinate males. To test this hypothesis, we housed 12 virgin male California mice in same-sex dyads on weaning and assessed their within-dyad subordinate or dominant status using food-competition and urine-marking tests. In addition, behavioral responses to an unrelated pup, expression of vasopressin (AVP) and corticotropin-releasing hormone (CRH) mRNA in the paraventricular hypothalamic nucleus (PVN), basal plasma levels of testosterone and corticosterone, and body mass were measured. Food-competition and urine-marking tests did not reveal strong or stable dominance-subordination relationships in male-male dyads. Latency to sniff a newborn pup was correlated negatively with urine marking in the center of a novel environment and positively with expression of AVP mRNA in the PVN. Because these three parameters are all associated with state anxiety in other rodent species, these results suggest that individual differences in paternal responsiveness may be influenced by individual differences in anxiety but not necessarily by social status in virgin male California mice.


General and Comparative Endocrinology | 2012

Hypothalamic-pituitary-adrenal (HPA) axis function in the California mouse (Peromyscus californicus): Changes in baseline activity, reactivity, and fecal excretion of glucocorticoids across the diurnal cycle

Breanna N. Harris; Wendy Saltzman; Trynke R. de Jong; Matthew R. Milnes

The California mouse, Peromyscus californicus, is an increasingly popular animal model in behavioral, neural, and endocrine studies, but little is known about its baseline hypothalamic-pituitary-adrenal (HPA) axis activity or HPA responses to stressors. We characterized plasma corticosterone (CORT) concentrations in P. californicus under baseline conditions across the diurnal cycle, in response to pharmacological manipulation of the HPA axis, and in response to a variety of stressors at different times of day. In addition, we explored the use of fecal samples to monitor adrenocortical activity non-invasively. California mice have very high baseline levels of circulating CORT that change markedly over 24h, but that do not differ between the sexes. This species may be somewhat glucocorticoid-resistant in comparison to other rodents as a relatively high dose of dexamethasone (5mg/kg, s.c.) was required to suppress plasma CORT for 8h post-injection. CORT responses to stressors and ACTH injection differed with time of day, as CORT concentrations were elevated more readily during the morning (inactive period) than in the evening (active period) when compared to time-matched control. Data from (3)H-CORT injection studies show that the time course for excretion of fecal CORT, or glucocorticoid metabolites, differs with time of injection. Mice injected in the evening excreted the majority of fecal radioactivity 2-4h post-injection whereas mice injected during the morning did so at 14-16h post-injection. Unfortunately, the antibody we used does not adequately bind the most prevalent fecal glucocorticoid metabolites and therefore we could not validate its use for fecal assays.


Physiology & Behavior | 2013

Effect of reproductive status on hypothalamic-pituitary-adrenal (HPA) activity and reactivity in male California mice (Peromyscus californicus)

Breanna N. Harris; Wendy Saltzman

Previous studies indicate that reproductive condition can alter stress response and glucocorticoid release. Although the functional significance of hypothalamic-pituitary-adrenal (HPA) axis modulation by breeding condition is not fully understood, one possible explanation is the behavior hypothesis, which states that an animals need to express parental behavior may be driving modulation of the HPA axis. This possibility is consistent with findings of blunted activity and reactivity of the HPA axis in lactating female mammals; however, effects of reproductive status on HPA function have not been well characterized in male mammals that express parental behavior. Therefore, we tested this hypothesis in the monogamous and biparental California mouse. Several aspects of HPA activity were compared in males from three reproductive conditions: virgin males (housed with another male), non-breeding males (housed with a tubally ligated female), and first-time fathers (housed with a female and their first litter of pups). In light of the behavior hypothesis we predicted that new fathers would differ from virgin and non-breeding males in several aspects of HPA function and corticosterone (CORT) output: decreased amplitude of the diurnal rhythm in CORT, a blunted CORT increase following predator-odor stress, increased sensitivity to glucocorticoid negative feedback, and/or a blunted CORT response to pharmacological stimulation. In addition, we predicted that first-time fathers would be more resistant to CORT-induced suppression of testosterone secretion, as testosterone is important for paternal behavior in this species. We found that virgin males, non-breeding males and first-time fathers did not display any CORT differences in diurnal rhythm, response to a predator-odor stressor, or response to pharmacological suppression or stimulation. Additionally, there were no differences in circulating testosterone concentrations. Adrenal mass was, however, significantly lower in new fathers than in virgin or non-breeding males. These results suggest that the behavior hypothesis does not explain HPA function across reproductive conditions in male California mice.


Physiological and Biochemical Zoology | 2012

Glucocorticoids, aerobic physiology, and locomotor behavior in California mice.

Elizabeth M. Dlugosz; Breanna N. Harris; Wendy Saltzman; Mark A. Chappell

The glucocorticoid hormones corticosterone (CORT) and cortisol influence numerous physiological, morphological, and behavioral functions. However, few studies have addressed possible relationships between individual differences in glucocorticoid concentrations and whole-animal performance or metabolism. Because CORT is important in glucose regulation and energy metabolism and can influence activity levels, we hypothesized that individual variation in baseline circulating CORT levels would correlate with individual differences in energy expenditure (routine and maximal), aerobic physiology, voluntary exercise on wheels, and organ masses. We tested this hypothesis in the California mouse (Peromyscus californicus). We collected data from 54 adult, colony-bred mice on baseline CORT levels (measured near both the circadian peak and the circadian trough), voluntary wheel running and its energetic costs, maximal oxygen consumption during forced treadmill exercise (), basal metabolic rate, and relative organ masses. We found surprisingly few statistically significant relationships among CORT, energy metabolism, behavior, and organ masses, and these relationships appeared to differ between males and females. These findings suggest that individual differences in baseline CORT levels are not an important determinant of voluntary activity levels or aerobic performance in California mice.


General and Comparative Endocrinology | 2016

The role of the hypothalamus-pituitary-adrenal/interrenal axis in mediating predator-avoidance trade-offs.

Breanna N. Harris; James A. Carr

Maintaining energy balance and reproducing are important for fitness, yet animals have evolved mechanisms by which the hypothalamus-pituitary-adrenal/interrenal (HPA/HPI) axis can shut these activities off. While HPA/HPI axis inhibition of feeding and reproduction may have evolved as a predator defense, to date there has been no review across taxa of the causal evidence for such a relationship. Here we review the literature on this topic by addressing evidence for three predictions: that exposure to predators decreases reproduction and feeding, that exposure to predators activates the HPA/HPI axis, and that predator-induced activation of the HPA/HPI axis inhibits foraging and reproduction. Weight of evidence indicates that exposure to predator cues inhibits several aspects of foraging and reproduction. While the evidence from fish and mammals supports the hypothesis that predator cues activate the HPA/HPI axis, the existing data in other vertebrate taxa are equivocal. A causal role for the HPA axis in predator-induced suppression of feeding and reproduction has not been demonstrated to date, although many studies report correlative relationships between HPA activity and reproduction and/or feeding. Manipulation of HPA/HPI axis signaling will be required in future studies to demonstrate direct mediation of predator-induced inhibition of feeding and reproduction. Understanding the circuitry linking sensory pathways to their control of the HPA/HPI axis also is needed. Finally, the role that fear and anxiety pathways play in the response of the HPA axis to predator cues is needed to better understand the role that predators have played in shaping anxiety related behaviors in all species, including humans.


General and Comparative Endocrinology | 2013

Effects of aging on hypothalamic-pituitary-adrenal (HPA) axis activity and reactivity in virgin male and female California mice (Peromyscus californicus)

Breanna N. Harris; Wendy Saltzman

Life history theory posits that organisms face a trade-off between current and future reproductive attempts. The physiological mechanisms mediating such trade-offs are still largely unknown, but glucocorticoid hormones are likely candidates as elevated, post-stress glucocorticoid levels have been shown to suppress both reproductive physiology and reproductive behavior. Aged individuals have a decreasing window in which to reproduce, and are thus predicted to invest more heavily in current as opposed to future reproduction. Therefore, if glucocorticoids are important in mediating the trade-off between current and future reproduction, aged animals are expected to show decreased hypothalamic-pituitary-adrenal (HPA) axis responses to stressors and to stimulation by corticotropin-releasing hormone (CRH), and enhanced responses to glucocorticoid negative feedback, as compared to younger animals. We tested this hypothesis in the monogamous, biparental California mouse by comparing baseline and post-stress corticosterone levels, as well as corticosterone responses to dexamethasone (DEX) and CRH injections, between old (∼18-20months) and young (∼4months) virgin adults of both sexes. We also measured gonadal and uterine masses as a proxy for investment in potential current reproductive effort. Adrenal glands were weighed to determine if older animal had decreased adrenal mass. Old male mice had lower plasma corticosterone levels 8h after DEX injection than did young male mice, suggesting that the anterior pituitary of older males is more sensitive to DEX-induced negative feedback. Old female mice had higher body-mass-corrected uterine mass than did young females. No other differences in corticosterone levels or organ masses were found between age groups within either sex. In conclusion, we did not find strong evidence for age-related change in HPA activity or reactivity in virgin adult male or female California mice; however, future studies investigating HPA activity and reproductive outcomes in young and old breeding adults would be illuminating.


Prevention Science | 2017

A Biopsychological Model of Anti-drug PSA Processing: Developing Effective Persuasive Messages

Zachary P. Hohman; Justin Robert Keene; Breanna N. Harris; Elizabeth M. Niedbala; Collin K. Berke

For the current study, we developed and tested a biopsychological model to combine research on psychological tension, the Limited Capacity Model of Motivated Mediated Message Processing, and the endocrine system to predict and understand how people process anti-drug PSAs. We predicted that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, will trigger evaluative tension about the target behavior in persuasive messages and result in a biological response (increase in cortisol, alpha amylase, and heart rate). In experiment 1, we assessed the impact of co-presentation of pleasant and unpleasant information in persuasive messages on evaluative tension (conceptualized as attitude ambivalence), in experiment 2, we explored the impact of co-presentation on endocrine system responses (salivary cortisol and alpha amylase), and in experiment 3, we assessed the impact of co-presentation on heart rate. Across all experiments, we demonstrated that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, in persuasive communications leads to increases in attitude ambivalence, salivary cortisol, salivary alpha amylase, and heart rate. Taken together, the results support the initial paths of our biopsychological model of persuasive message processing and indicate that including both pleasant and unpleasant information in a message impacts the viewer. We predict that increases in evaluative tension and biological responses will aid in memory and cognitive processing of the message. However, future research is needed to test that hypothesis.

Collaboration


Dive into the Breanna N. Harris's collaboration.

Top Co-Authors

Avatar

Wendy Saltzman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meng Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge