Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brenda DeGray is active.

Publication


Featured researches published by Brenda DeGray.


Journal of Biological Chemistry | 1999

Specific Association of Megalin and the Na+/H+ Exchanger Isoform NHE3 in the Proximal Tubule

Daniel Biemesderfer; Tamas Nagy; Brenda DeGray; Peter S. Aronson

We investigated whether the renal brush border Na+/H+ exchanger NHE3 exists in assemblies with other proteins in native kidney membranes. To this end we generated monoclonal antibodies (mAbs) against affinity purified NHE3 protein complexes. Hybridomas were selected based on ability to immunoprecipitate NHE3. One of the resulting mAbs (10A3) labeled a high molecular mass (>200 kDa) protein and stained primarily the coated pit region of the proximal tubule in a manner similar to that described for megalin (gp330). We then confirmed that both mAb 10A3 and a known anti-megalin mAb immunoprecipitated and immunoblotted the same protein, namely megalin. mAb 10A3 specifically co-precipitated NHE3 but not villin or NaPi-2 from solubilized renal membranes, indicating specificity of the NHE3-megalin interaction. When immunoprecipitations were performed using either 10A3 or anti-NHE3 mAb 2B9 after separation of solubilized renal proteins by sucrose velocity gradient centrifugation, we found that NHE3 exists in two states with distinct sedimentation coefficients, a 9.6 S megalin-free form and a 21 S megalin-bound form, and that when NHE3 assembles with megalin, epitopes within the carboxyl-terminal 131 amino acids of NHE3 are blocked. Taken together, these findings indicate that a significant pool of NHE3 exists as a multimeric complex with megalin in the brush border of the proximal tubule.


Journal of Clinical Investigation | 2006

Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium

Christina Schlecker; Wolfgang Boehmerle; Andreas Jeromin; Brenda DeGray; Anurag Varshney; Yogendra Sharma; Klara Szigeti-Buck; Barbara E. Ehrlich

Regulation and dysregulation of intracellular calcium (Ca2+) signaling via the inositol 1,4,5-trisphosphate receptor (InsP3R) has been linked to many cellular processes and pathological conditions. In the present study, addition of neuronal calcium sensor-1 (NCS-1), a high-affinity, low-capacity, calcium-binding protein, to purified InsP3R type 1 (InsP3R1) increased the channel activity in both a calcium-dependent and -independent manner. In intact cells, enhanced expression of NCS-1 resulted in increased intracellular calcium release upon stimulation of the phosphoinositide signaling pathway. To determine whether InsP3R1/NCS-1 interaction could be functionally relevant in bipolar disorders, conditions in which NCS-1 is highly expressed, we tested the effect of lithium, a salt widely used for treatment of bipolar disorders. Lithium inhibited the enhancing effect of NCS-1 on InsP3R1 function, suggesting that InsP3R1/NCS-1 interaction is an essential component of the pathomechanism of bipolar disorder.


The Journal of Neuroscience | 2005

Signaling Microdomains Regulate Inositol 1,4,5-Trisphosphate-Mediated Intracellular Calcium Transients in Cultured Neurons

Simon N. Jacob; Chi-un Choe; Per Uhlén; Brenda DeGray; Mark F. Yeckel; Barbara E. Ehrlich

Ca2+ signals in neurons use specific temporal and spatial patterns to encode unambiguous information about crucial cellular functions. To understand the molecular basis for initiation and propagation of inositol 1,4,5-trisphosphate (InsP3)-mediated intracellular Ca2+ signals, we correlated the subcellular distribution of components of the InsP3 pathway with measurements of agonist-induced intracellular Ca2+ transients in cultured rat hippocampal neurons and pheochromocytoma cells. We found specialized domains with high levels of phosphatidylinositol-4-phosphate kinase (PIPKIγ) and chromogranin B (CGB), proteins acting synergistically to increase InsP3 receptor (InsP3R) activity and sensitivity. In contrast, Ca2+ pumps in the plasma membrane (PMCA) and sarco-endoplasmic reticulum as well as buffers that antagonize the rise in intracellular Ca2+ were distributed uniformly. By pharmacologically blocking phosphatidylinositol-4-kinase and PIPKIγ or disrupting the CGB-InsP3R interaction by transfecting an interfering polypeptide fragment, we produced major changes in the initiation site and kinetics of the Ca2+ signal. This study shows that a limited number of proteins can reassemble to form unique, spatially restricted signaling domains to generate distinctive signals in different regions of the same neuron. The finding that the subcellular location of initiation sites and protein microdomains was cell type specific will help to establish differences in spatiotemporal Ca2+ signaling in different types of neurons.


Journal of Biological Chemistry | 1998

Membrane Topology of NHE3 EPITOPES WITHIN THE CARBOXYL-TERMINAL HYDROPHILIC DOMAIN ARE EXOPLASMIC

Daniel Biemesderfer; Brenda DeGray; Peter S. Aronson

Experimental data indicate that the relatively hydrophilic carboxyl-terminal domains of Na+-H+ exchangers mediate the regulation of transporter activity through interactions with cytoskeletal effectors. It has therefore been assumed that this entire domain lies on the cytoplasmic surface of the plasma membrane. The purpose of the present study was to determine the membrane orientation of the COOH-terminal 131 amino acids of Na+-H+exchanger isoform NHE3 by use of three monoclonal antibodies that recognize at least two distinct epitopes within this region. Enzyme-linked immunosorbent assay studies demonstrated binding of these monoclonal antibodies (mAbs) to intact right-side-out renal brush border membrane vesicles in the absence of detergent. Moreover, when coupled to an affinity matrix to isolate membrane vesicles, the anti-NHE3 mAbs bound structures that were morphologically identical to intact microvilli. To confirm the identity of the exoplasmic antigen bound by the antibodies, immunoprecipitation studies were performed. Intact right-side-out brush border membrane vesicles were incubated with the mAbs in the absence of detergent. The membranes were pelleted, supernatant with unbound antibody was removed, the pellet was solubilized, and then immunoprecipitation with secondary antibody was performed. Immunoblot analysis indicated that NHE3 was precipitated after binding of the mAbs to intact membranes. Finally, the localization of the mAb epitopes was determined using high resolution immunocytochemistry. Ultrathin cryosections of rat kidney were labeled with the mAbs and bound antibody detected with the colloidal gold technique. Labeling was restricted to the exoplasmic surface of microvilli of the proximal tubule. Taken together, these findings indicate that epitopes within the carboxyl terminus of the Na+-H+ exchanger isoform NHE3 are exposed to the outside of the plasma membrane.


Journal of Molecular and Cellular Cardiology | 2010

Paclitaxel accelerates spontaneous calcium oscillations in cardiomyocytes by interacting with NCS-1 and the InsP3R

Kun Zhang; Felix M. Heidrich; Brenda DeGray; Wolfgang Boehmerle; Barbara E. Ehrlich

Paclitaxel (Taxol) is a microtubule-stabilizing compound that is used for cancer chemotherapy. However, Taxol administration is limited by serious side effects including cardiac arrhythmia, which cannot be explained by its microtubule-stabilizing effect. Recently, neuronal calcium sensor 1 (NCS-1), a calcium binding protein that modulates the inositol-1,4,5-trisphosphate receptor (InsP(3)R), was described as a binding partner of Taxol and as a substrate of calpain. We examined calcium signaling processes in cardiomyocytes after treatment with Taxol to investigate the basis of Taxol-induced cardiac arrhythmia. After treating isolated neonatal rat ventricular myocytes with a therapeutic concentration of Taxol for several hours live cell imaging experiments showed that the frequency of spontaneous calcium oscillations significantly increased. This effect was not mimicked by other tubulin-stabilizing agents. However, it was prevented by inhibiting the InsP(3)R. Taxol treated cells had increased expression of NCS-1, an effect also detectable after Taxol administration in vivo. Short hairpin RNA mediated knockdown of NCS-1 decreased InsP(3)R dependent intracellular calcium release, whereas Taxol treatment, that increased NCS-1 levels, increased InsP(3)R dependent calcium release. The effects of Taxol were ryanodine receptor independent. At the single channel level Taxol and NCS-1 mediated an increase in InsP(3)R activity. Calpain activity was not affected by Taxol in cardiomyocytes suggesting a calpain independent signaling pathway. In short, our study shows that Taxol impacts calcium signaling and calcium oscillations in cardiomyocytes through NCS-1 and the InsP(3)R.


American Journal of Physiology-renal Physiology | 2009

Analysis of the cytoplasmic interaction between polycystin-1 and polycystin-2

Jozefina Casuscelli; Stefan Schmidt; Brenda DeGray; Edward T. Petri; Andjelka Ćelić; Ewa Folta-Stogniew; Barbara E. Ehrlich; Titus J. Boggon

Autosomal dominant polycystic kidney disease (ADPKD) arises following mutations of either Pkd1 or Pkd2. The proteins these genes encode, polycystin-1 (PC1) and polycystin-2 (PC2), form a signaling complex using direct intermolecular interactions. Two distinct domains in the C-terminal tail of PC2 have recently been identified, an EF-hand and a coiled-coil domain. Here, we show that the PC2 coiled-coil domain interacts with the C-terminal tail of PC1, but that the PC2 EF-hand domain does not. We measured the K0.5 of the interaction between the C-terminal tails of PC1 and PC2 and showed that the direct interaction of these proteins is abrogated by a PC1 point mutation that was identified in ADPKD patients. Finally, we showed that overexpression of the PC1 C-terminal tail in MDCK cells alters the Ca2+ response, but that overexpression of the PC1 C-terminal tail containing the disease mutation does not. These results allow a more detailed understanding of the mechanism of pathogenic mutations in the cytoplasmic regions of PC1 and PC2.


Journal of Biological Chemistry | 2012

Inhibition of Paclitaxel-Induced Decreases in Calcium Signaling

Jennifer H. Benbow; Taylor Mann; Camille Keeler; Chengpeng Fan; Michael E. Hodsdon; Elias Lolis; Brenda DeGray; Barbara E. Ehrlich

Background: Microtubule-dependent chemotherapeutic drugs cause an irreversible peripheral neuropathy through a calcium-dependent signaling pathway. Results: The addition of candidate compounds (lithium and ibudilast) inhibits harmful changes to cells caused by microtubule-based chemotherapeutic drugs. Conclusion: Co-administration of ibudilast or lithium inhibits drug-induced changes in cell function. Significance: Addition of these protectors may inhibit unnecessary damage caused by chemotherapeutic drugs. Peripheral neuropathy is one of the most severe and irreversible side effects caused by treatment from several chemotherapeutic drugs, including paclitaxel (Taxol®) and vincristine. Strategies are needed that inhibit this unwanted side effect without altering the chemotherapeutic action of these drugs. We previously identified two proteins in the cellular pathway that lead to Taxol-induced peripheral neuropathy, neuronal calcium sensor-1 (NCS-1) and calpain. Prolonged treatment with Taxol induces activation of calpain, degradation of NCS-1, and loss of intracellular calcium signaling. This paper has focused on understanding the molecular basis for prevention of peripheral neuropathy by testing the effects of addition of two candidate compounds to the existing chemotherapeutic drug regime: lithium and ibudilast. We found that the co-administration of either lithium or ibudilast to neuroblastoma cells that were treated with Taxol or vincristine inhibited activation of calpain and the reductions in NCS-1 levels and calcium signaling associated with these chemotherapeutic drugs. The ability of Taxol to alter microtubule formation was unchanged by the addition of either candidate compound. These results allow us to suggest that it is possible to prevent the unnecessary and irreversible damage caused by chemotherapeutic drugs while still maintaining therapeutic efficacy. Specifically, the addition of either lithium or ibudilast to existing chemotherapy treatment protocols has the potential to prevent chemotherapy-induced peripheral neuropathy.


Biochemical Journal | 2004

InsP3-mediated intracellular calcium signalling is altered by expression of synaptojanin-1

Friedrich W. Johenning; Markus R. Wenk; Per Uhlén; Brenda DeGray; Eunkyung Lee; Pietro De Camilli; Barbara E. Ehrlich

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] plays an important physiological role as a precursor for the InsP3-mediated intracellular calcium (Ca2+) signalling cascade. It also regulates membrane trafficking, actin function and transmembrane proteins. SJ-1 (synaptojanin-1), a phosphoinositide phosphatase, regulates the turnover of a PtdIns(4,5)P2 pool involved in clathrin and actin dynamics at the cell surface. We tested the interrelationship of this pool with PtdIns(4,5)P2 pools involved in Ca2+ signalling by expressing in Chinese-hamster ovary cells full-length SJ-1 or its 5-Pase (inositol 5-phosphatase) domain. SJ-1 significantly attenuated the generation of Ca2+ oscillations induced by ATP and the 5-Pase domain mimicked this effect. These changes correlated with increased PtdIns(4,5)P2 phosphatase activity of cellular extracts. Overexpression of the endoplasmic reticulum-anchored PtdIns(4)P phosphatase Sac1 did not affect Ca2+ oscillations, although it increased the Ca2+ efflux rate from intracellular stores. The ability of SJ-1 to alter intracellular Ca2+ signalling indicates a close functional interrelationship between plasma membrane PtdIns(4,5)P2 pools that control actin and endocytosis and those involved in the regulation of specific spatio-temporal Ca2+ signals.


Journal of Biological Chemistry | 2011

Protection of Neuronal Calcium Sensor 1 Protein in Cells Treated with Paclitaxel

Jennifer H. Benbow; Brenda DeGray; Barbara E. Ehrlich

Paclitaxel (Taxol) is one of the most effective treatment options for patients suffering from a variety of cancers. A major side effect seen in a high percentage of patients treated with paclitaxel is irreversible peripheral neuropathy. We previously reported that prolonged treatment with paclitaxel activates a calcium-dependent enzyme, calpain, which degrades neuronal calcium sensor 1 (NCS-1) and subsequent loss of intracellular calcium signaling. Because it appears that activation of calpain is an early step in this destructive cascade, we proposed that inhibition of calpain will protect against the unwanted side effects of paclitaxel treatment. First, NCS-1 levels and intracellular calcium signaling were found to be protected by the presence of lactacystin, a protesome inhibitor. To reinforce the role of calpain in this process, we showed that increased concentrations of calpastatin, a naturally occurring calpain inhibitor, were protective. Next, we tested two mutated versions of NCS-1 developed with point mutations at the P2 position of the calpain cleavage site of NCS-1 to decrease the likelihood of NCS-1 degradation. One mutant was cleaved more favorably by calpain compared with NCS-1 WT, whereas the other mutant was less favorably cleaved. Expression of either mutated version of NCS-1 in neuroblastoma cells protected intracellular calcium signals from paclitaxel-induced changes. These results support our hypothesis that it is possible to protect cells from paclitaxel-induced degradation of NCS-1 by inhibiting calpain activity.


Journal of Biological Chemistry | 2001

Association of Na+-H+ Exchanger Isoform NHE3 and Dipeptidyl Peptidase IV in the Renal Proximal Tubule

Adriana Castello Costa Girardi; Brenda DeGray; Tamas Nagy; Daniel Biemesderfer; Peter S. Aronson

Collaboration


Dive into the Brenda DeGray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Jeromin

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge