Brenda L. Bloodgood
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brenda L. Bloodgood.
The Journal of Neuroscience | 2007
Ganesh M. Shankar; Brenda L. Bloodgood; Matthew Townsend; Dominic M. Walsh; Dennis J. Selkoe; Bernardo L. Sabatini
Alzheimers disease (AD) is characterized by decreased synapse density in hippocampus and neocortex, and synapse loss is the strongest anatomical correlate of the degree of clinical impairment. Although considerable evidence supports a causal role for the amyloid-β protein (Aβ) in AD, a direct link between a specific form of Aβ and synapse loss has not been established. We demonstrate that physiological concentrations of naturally secreted Aβ dimers and trimers, but not monomers, induce progressive loss of hippocampal synapses. Pyramidal neurons in rat organotypic slices had markedly decreased density of dendritic spines and numbers of electrophysiologically active synapses after exposure to picomolar levels of soluble oligomers. Spine loss was reversible and was prevented by Aβ-specific antibodies or a small-molecule modulator of Aβ aggregation. Mechanistically, Aβ-mediated spine loss required activity of NMDA-type glutamate receptors (NMDARs) and occurred through a pathway involving cofilin and calcineurin. Furthermore, NMDAR-mediated calcium influx into active spines was reduced by Aβ oligomers. Partial blockade of NMDARs by pharmacological antagonists was sufficient to trigger spine loss. We conclude that soluble, low-n oligomers of human Aβ trigger synapse loss that can be reversed by therapeutic agents. Our approach provides a quantitative cellular model for elucidating the molecular basis of Aβ-induced neuronal dysfunction.
Cell | 2010
Paul L. Greer; Rikinari Hanayama; Brenda L. Bloodgood; Alan R. Mardinly; David M. Lipton; Steven W. Flavell; Tae Kyung Kim; Eric C. Griffith; Zachary Waldon; René Maehr; Hidde L. Ploegh; Shoaib Chowdhury; Paul F. Worley; Judith A. Steen; Michael E. Greenberg
Angelman Syndrome is a debilitating neurological disorder caused by mutation of the E3 ubiquitin ligase Ube3A, a gene whose mutation has also recently been associated with autism spectrum disorders (ASDs). The function of Ube3A during nervous system development and how Ube3A mutations give rise to cognitive impairment in individuals with Angleman Syndrome and ASDs are not clear. We report here that experience-driven neuronal activity induces Ube3A transcription and that Ube3A then regulates excitatory synapse development by controlling the degradation of Arc, a synaptic protein that promotes the internalization of the AMPA subtype of glutamate receptors. We find that disruption of Ube3A function in neurons leads to an increase in Arc expression and a concomitant decrease in the number of AMPA receptors at excitatory synapses. We propose that this deregulation of AMPA receptor expression at synapses may contribute to the cognitive dysfunction that occurs in Angelman Syndrome and possibly other ASDs.
Nature | 2008
Yingxi Lin; Brenda L. Bloodgood; Jessica L. Hauser; Ariya D. Lapan; Alex C. Koon; Tae Kyung Kim; Linda Hu; Athar N. Malik; Michael E. Greenberg
Neuronal activity regulates the development and maturation of excitatory and inhibitory synapses in the mammalian brain. Several recent studies have identified signalling networks within neurons that control excitatory synapse development. However, less is known about the molecular mechanisms that regulate the activity-dependent development of GABA (γ-aminobutyric acid)-releasing inhibitory synapses. Here we report the identification of a transcription factor, Npas4, that plays a role in the development of inhibitory synapses by regulating the expression of activity-dependent genes, which in turn control the number of GABA-releasing synapses that form on excitatory neurons. These findings demonstrate that the activity-dependent gene program regulates inhibitory synapse development, and suggest a new role for this program in controlling the homeostatic balance between synaptic excitation and inhibition.
Nature Neuroscience | 2005
Thu Jennifer Ngo-Anh; Brenda L. Bloodgood; Michael T. Lin; Bernardo L. Sabatini; James Maylie; John P. Adelman
Small-conductance Ca2+-activated K+ channels (SK channels) influence the induction of synaptic plasticity at hippocampal CA3–CA1 synapses. We find that in mice, SK channels are localized to dendritic spines, and their activity reduces the amplitude of evoked synaptic potentials in an NMDA receptor (NMDAR)-dependent manner. Using combined two-photon laser scanning microscopy and two-photon laser uncaging of glutamate, we show that SK channels regulate NMDAR-dependent Ca2+ influx within individual spines. SK channels are tightly coupled to synaptically activated Ca2+ sources, and their activity reduces the amplitude of NMDAR-dependent Ca2+ transients. These effects are mediated by a feedback loop within the spine head; during an excitatory postsynaptic potential (EPSP), Ca2+ influx opens SK channels that provide a local shunting current to reduce the EPSP and promote rapid Mg2+ block of the NMDAR. Thus, blocking SK channels facilitates the induction of long-term potentiation by enhancing NMDAR-dependent Ca2+ signals within dendritic spines.
Neuron | 2007
Brenda L. Bloodgood; Bernardo L. Sabatini
The roles of voltage-sensitive sodium (Na) and calcium (Ca) channels located on dendrites and spines in regulating synaptic signals are largely unknown. Here we use 2-photon glutamate uncaging to stimulate individual spines while monitoring uncaging-evoked excitatory postsynaptic potentials (uEPSPs) and Ca transients. We find that, in CA1 pyramidal neurons in acute mouse hippocampal slices, CaV(2.3) voltage-sensitive Ca channels (VSCCs) are found selectively on spines and act locally to dampen uncaging-evoked Ca transients and somatic potentials. These effects are mediated by a regulatory loop that requires opening of CaV(2.3) channels, voltage-gated Na channels, small conductance Ca-activated potassium (SK) channels, and NMDA receptors. Ca influx through CaV(2.3) VSCCs selectively activates SK channels, revealing the presence of functional Ca microdomains within the spine. Our results suggest that synaptic strength can be modulated by mechanisms that regulate voltage-gated conductances within the spine but do not alter the properties or numbers of synaptic glutamate receptors.
Nature | 2013
Brenda L. Bloodgood; Nikhil Sharma; Heidi Adlman Browne; Alissa Z. Trepman; Michael E. Greenberg
A heterogeneous population of inhibitory neurons controls the flow of information through a neural circuit. Inhibitory synapses that form on pyramidal neuron dendrites modulate the summation of excitatory synaptic potentials and prevent the generation of dendritic calcium spikes. Precisely timed somatic inhibition limits both the number of action potentials and the time window during which firing can occur. The activity-dependent transcription factor NPAS4 regulates inhibitory synapse number and function in cell culture, but how this transcription factor affects the inhibitory inputs that form on distinct domains of a neuron in vivo was unclear. Here we show that in the mouse hippocampus behaviourally driven expression of NPAS4 coordinatesthe redistribution of inhibitory synapses made onto a CA1 pyramidal neuron, simultaneously increasing inhibitory synapse number on the cell body while decreasing the number of inhibitory synapses on the apical dendrites. This rearrangement of inhibition is mediated in part by the NPAS4 target gene brain derived neurotrophic factor (Bdnf), which specifically regulates somatic, and not dendritic, inhibition. These findings indicate that sensory stimuli, by inducing NPAS4 and its target genes, differentially control spatial features of neuronal inhibition in a way that restricts the output of the neuron while creating a dendritic environment that is permissive for plasticity.
PLOS Biology | 2009
Brenda L. Bloodgood; Andrew J. Giessel; Bernardo L. Sabatini
Dendritic spines compartmentalize synaptically-evoked biochemical signals. The authors show that electrical compartmentalization provided by a spine endows the associated synapse with additional modes of calcium signaling by shaping the kinetics of synaptic calcium currents.
The Journal of Physiology | 2008
Brenda L. Bloodgood; Bernardo L. Sabatini
Activation of glutamatergic synapses onto pyramidal neurons produces a synaptic depolarization as well as a buildup of intracellular calcium (Ca2+). The synaptic depolarization propagates through the dendritic arbor and can be detected at the soma with a recording electrode. Current influx through AMPA‐type glutamate receptors (AMPARs) provides the depolarizing drive, and the amplitudes of synaptic potentials are generally thought to reflect the number and properties of these receptors at each synapse. In contrast, synaptically evoked Ca2+ transients are limited to the spine containing the active synapse and result primarily from Ca2+ influx through NMDA‐type glutamate receptors (NMDARs). Here we review recent studies that reveal that both synaptic depolarizations and spine head Ca2+ transients are strongly regulated by the activity of postsynaptic, non‐glutamate receptor ion channels. In hippocampal pyramidal neurons, voltage‐ and Ca2+‐gated ion channels located in dendritic spines open as downstream consequences of glutamate receptor activation and act within a complex signalling loop that feeds back to regulate synaptic signals. Dynamic regulation of these ion channels offers a powerful mechanism of synaptic plasticity that is independent of direct modulation of glutamate receptors.
Nature Neuroscience | 2012
Michael J. Soskis; Hsin Yi Henry Ho; Brenda L. Bloodgood; Michael A. Robichaux; Athar N. Malik; Alex A. Rubin; Janine Zieg; Chao Zhang; Kevan M. Shokat; Nikhil Sharma; Christopher W. Cowan; Michael E. Greenberg
EphB receptor tyrosine kinases control multiple steps in nervous system development. However, it remains unclear whether EphBs regulate these different developmental processes directly or indirectly. In addition, given that EphBs signal through multiple mechanisms, it has been challenging to define which signaling functions of EphBs regulate particular developmental events. To address these issues, we engineered triple knock-in mice in which the kinase activity of three neuronally expressed EphBs can be rapidly, reversibly and specifically blocked. We found that the tyrosine kinase activity of EphBs was required for axon guidance in vivo. In contrast, EphB-mediated synaptogenesis occurred normally when the kinase activity of EphBs was inhibited, suggesting that EphBs mediate synapse development by an EphB tyrosine kinase–independent mechanism. Taken together, our data indicate that EphBs control axon guidance and synaptogenesis by distinct mechanisms and provide a new mouse model for dissecting EphB function in development and disease.
Journal of Cell Biology | 2017
Ajit S. Divakaruni; Martina Wallace; Caodu Buren; Kelly Martyniuk; Alexander Y. Andreyev; Edward Li; Jerel A. Fields; Thekla Cordes; Ian J. Reynolds; Brenda L. Bloodgood; Lynn A. Raymond; Christian M. Metallo; Anne N. Murphy
Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity.