Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brendan Doyle is active.

Publication


Featured researches published by Brendan Doyle.


Cell | 2009

Mutant p53 Drives Invasion by Promoting Integrin Recycling

Patricia A. J. Muller; Patrick T. Caswell; Brendan Doyle; Marcin P. Iwanicki; Ee H. Tan; Saadia A. Karim; Natalia Lukashchuk; David A. Gillespie; Robert L. Ludwig; Pauline Gosselin; Anne Cromer; Joan S. Brugge; Owen J. Sansom; Jim C. Norman; Karen H. Vousden

p53 is a tumor suppressor protein whose function is frequently lost in cancers through missense mutations within the Tp53 gene. This results in the expression of point-mutated p53 proteins that have both lost wild-type tumor suppressor activity and show gain of functions that contribute to transformation and metastasis. Here, we show that mutant p53 expression can promote invasion, loss of directionality of migration, and metastatic behavior. These activities of p53 reflect enhanced integrin and epidermal growth factor receptor (EGFR) trafficking, which depends on Rab-coupling protein (RCP) and results in constitutive activation of EGFR/integrin signaling. We provide evidence that mutant p53 promotes cell invasion via the inhibition of TAp63, and simultaneous loss of p53 and TAp63 recapitulates the phenotype of mutant p53 in cells. These findings open the possibility that blocking alpha5/beta1-integrin and/or the EGF receptor will have therapeutic benefit in mutant p53-expressing cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer

Jennifer P. Morton; Paul Timpson; Saadia A. Karim; Rachel A. Ridgway; Dimitris Athineos; Brendan Doyle; Nigel B. Jamieson; Karin A. Oien; Andrew M. Lowy; Valerie G. Brunton; Margaret C. Frame; T.R. Jeffry Evans; Owen J. Sansom

TP53 mutation occurs in 50–75% of human pancreatic ductal adenocarcinomas (PDAC) following an initiating activating mutation in the KRAS gene. These p53 mutations frequently result in expression of a stable protein, p53R175H, rather than complete loss of protein expression. In this study we elucidate the functions of mutant p53 (Trp53R172H), compared to knockout p53 (Trp53fl), in a mouse model of PDAC. First we find that although KrasG12D is one of the major oncogenic drivers of PDAC, most KrasG12D-expressing pancreatic cells are selectively lost from the tissue, and those that remain form premalignant lesions. Loss, or mutation, of Trp53 allows retention of the KrasG12D-expressing cells and drives rapid progression of these premalignant lesions to PDAC. This progression is consistent with failed growth arrest and/or senescence of premalignant lesions, since a mutant of p53, p53R172P, which can still induce p21 and cell cycle arrest, is resistant to PDAC formation. Second, we find that despite similar kinetics of primary tumor formation, mutant p53R172H, as compared with genetic loss of p53, specifically promotes metastasis. Moreover, only mutant p53R172H-expressing tumor cells exhibit invasive activity in an in vitro assay. Importantly, in human PDAC, p53 accumulation significantly correlates with lymph node metastasis. In summary, by using ‘knock-in’ mutations of Trp53 we have identified two critical acquired functions of a stably expressed mutant form of p53 that drive PDAC; first, an escape from KrasG12D-induced senescence/growth arrest and second, the promotion of metastasis.


Nature Communications | 2011

P-Rex1 is required for efficient melanoblast migration and melanoma metastasis

Colin R. Lindsay; Samuel Lawn; Andrew D. Campbell; William J. Faller; Florian Rambow; Richard L. Mort; Paul Timpson; Ang Li; Patrizia Cammareri; Rachel A. Ridgway; Jennifer P. Morton; Brendan Doyle; Shauna Hegarty; Mairin Rafferty; Ian Murphy; Enda W. McDermott; Kieran Sheahan; Katherine H. Pedone; Alexander J. Finn; Pamela A. Groben; Nancy E. Thomas; Honglin Hao; Craig Carson; Jim C. Norman; Laura M. Machesky; William M. Gallagher; Ian J. Jackson; Leon Van Kempen; Friedrich Beermann; Channing J. Der

Metastases are the major cause of death from melanoma, a skin cancer that has the fastest rising incidence of any malignancy in the Western world. Molecular pathways that drive melanoblast migration in development are believed to underpin the movement and ultimately the metastasis of melanoma. Here we show that mice lacking P-Rex1, a Rac-specific Rho GTPase guanine nucleotide exchange factor, have a melanoblast migration defect during development evidenced by a white belly. Moreover, these P-Rex1(-/-) mice are resistant to metastasis when crossed to a murine model of melanoma. Mechanistically, this is associated with P-Rex1 driving invasion in a Rac-dependent manner. P-Rex1 is elevated in the majority of human melanoma cell lines and tumour tissue. We conclude that P-Rex1 has an important role in melanoblast migration and cancer progression to metastasis in mice and humans.


Cancer Research | 2011

Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53

Paul Timpson; Ewan J. McGhee; Jennifer P. Morton; Alex von Kriegsheim; Juliane P. Schwarz; Saadia A. Karim; Brendan Doyle; John A. Quinn; Neil O. Carragher; M. Edward; Michael F. Olson; Margaret C. Frame; Valerie G. Brunton; Owen J. Sansom; Kurt I. Anderson

The ability to observe changes in molecular behavior during cancer cell invasion in vivo remains a major challenge to our understanding of the metastatic process. Here, we demonstrate for the first time, an analysis of RhoA activity at a subcellular level using FLIM-FRET (fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer) imaging in a live animal model of pancreatic cancer. In invasive mouse pancreatic ductal adenocarcinoma (PDAC) cells driven by mutant p53 (p53(R172H)), we observed a discrete fraction of high RhoA activity at both the leading edge and rear of cells in vivo which was absent in two-dimensional in vitro cultures. Notably, this pool of active RhoA was absent in noninvasive p53(fl) knockout PDAC cells, correlating with their poor invasive potential in vivo. We used dasatanib, a clinically approved anti-invasive agent that is active in this model, to illustrate the functional importance of spatially regulated RhoA. Dasatanib inhibited the activity of RhoA at the poles of p53(R172H) cells in vivo and this effect was independent of basal RhoA activity within the cell body. Taken together, quantitative in vivo fluorescence lifetime imaging illustrated that RhoA is not only necessary for invasion, but also that subcellular spatial regulation of RhoA activity, as opposed to its global activity, is likely to govern invasion efficiency in vivo. Our findings reveal the utility of FLIM-FRET in analyzing dynamic biomarkers during drug treatment in living animals, and they also show how discrete intracellular molecular pools might be differentially manipulated by future anti-invasive therapies.


Gastroenterology | 2010

Dasatinib Inhibits the Development of Metastases in a Mouse Model of Pancreatic Ductal Adenocarcinoma

Jennifer P. Morton; Saadia A. Karim; Kathryn Graham; Paul Timpson; Nigel B. Jamieson; Dimitris Athineos; Brendan Doyle; Colin J. McKay; Man–Yeung Heung; Karin A. Oien; Margaret C. Frame; T.R. Jeffry Evans; Owen J. Sansom; Valerie G. Brunton

BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive and metastatic disease for which conventional treatments are of limited efficacy. A number of agents in development are potential anti-invasive and antimetastatic agents, including the Src kinase inhibitor dasatinib. The aim of this study was to assess the importance of Src in human PDAC and to use a genetically engineered mouse model of PDAC to determine the effects of dasatinib on PDAC progression. METHODS Src expression and activity was measured by immunohistochemistry in 114 human PDACs. Targeting expression of Trp53(R172H) and Kras(G12D) to the mouse pancreas results in the formation of invasive and metastatic PDAC. These mice were treated with dasatinib, and disease progression monitored. Cell lines were derived from mouse PDACs, and in vitro effects of dasatinib assessed. RESULTS Src expression and activity were up-regulated in human PDAC and this correlated with reduced survival. Dasatinib inhibited the migration and invasion of PDAC cell lines, although no effects on proliferation were seen at concentrations that inhibited Src kinase activity. In addition, dasatinib significantly inhibited the development of metastases in Pdx1-Cre, Z/EGFP, LSL-Kras(G12D/+), LSL-Trp53(R172H/+) mice. However, there was no survival advantage in the dasatinib-treated animals owing to continued growth of the primary tumor. CONCLUSIONS This study confirms the importance of Src in human PDAC and shows the usefulness of a genetically engineered mouse model of PDAC for assessing the activity of potential antimetastatic agents and suggests that dasatinib should be evaluated further as monotherapy after resection of localized invasive PDAC.


Molecular Cell | 2011

Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras.

David Matallanas; David Romano; Fahd Al-Mulla; Eric O'Neill; Waleed Al-Ali; Piero Crespo; Brendan Doyle; Colin Nixon; Owen J. Sansom; Matthias Drosten; Mariano Barbacid; Walter Kolch

K-Ras mutations are frequent in colorectal cancer (CRC), albeit K-Ras is the only Ras isoform that can elicit apoptosis. Here, we show that mutant K-Ras directly binds to the tumor suppressor RASSF1A to activate the apoptotic MST2-LATS1 pathway. In this pathway LATS1 binds to and sequesters the ubiquitin ligase Mdm2 causing stabilization of the tumor suppressor p53 and apoptosis. However, mutant Ras also stimulates autocrine activation of the EGF receptor (EGFR) which counteracts mutant K-Ras-induced apoptosis. Interestingly, this protection requires the wild-type K-Ras allele, which inhibits the MST2 pathway in part via AKT activation. Confirming the pathophysiological relevance of the molecular findings, we find a negative correlation between K-Ras mutation and MST2 expression in human CRC patients and CRC mouse models. The small number of tumors with co-expression of mutant K-Ras and MST2 has elevated apoptosis rates. Thus, in CRC, mutant K-Ras transformation is supported by the wild-type allele.


The Journal of Pathology | 2010

p53 mutation and loss have different effects on tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma.

Brendan Doyle; Jennifer P. Morton; David Delaney; Rachel A. Ridgway; Julie A. Wilkins; Owen J. Sansom

Pleomorphic rhabdomyosarcoma is the most common variant of this tumour in adults and has a very poor outcome. Two genes which are known to play a role in rhabdomyosarcoma development are KRas and p53. In the majority of human tumours, p53 abnormalities are point mutations that result in the expression of a mutant form of the protein. It is now hypothesized that these mutant forms of p53 may be playing an oncogenic role, over and above simple loss of the wild‐type function. In this study, we use Cre‐LoxP technology to develop a novel mouse model of rhabdomyosarcoma, crossing mice expressing a common KRas mutation (G12V) with mice that either lose p53 expression or express a mutant form of p53. We use this model to explore the different effects of p53 loss and mutation in the setting of an activating KRas mutation. We found that either complete loss of p53 (p53


Carcinogenesis | 2009

A novel Src kinase inhibitor reduces tumour formation in a skin carcinogenesis model

Bryan Serrels; Alan Serrels; Susan Mason; Christine Baldeschi; Gabrielle H. Ashton; Marta Canel; Lorna J. Mackintosh; Brendan Doyle; Tim P. Green; Margaret C. Frame; Owen J. Sansom; Valerie G. Brunton

^{\rm{fl/fl}}


British Journal of Pharmacology | 2011

Mice lacking the Raf-1 kinase inhibitor protein exhibit exaggerated hypoxia-induced pulmonary hypertension

Ian Morecroft; Brendan Doyle; M Nilsen; Walter Kolch; Kirsty M. Mair; MacLean

) or the expression of one mutant p53 allele with concomitant loss of the second allele (p53


Molecular Cell | 2011

Activation of the PIK3CA/AKT Pathway Suppresses Senescence Induced by an Activated RAS Oncogene to Promote Tumorigenesis

Alyssa L. Kennedy; Jennifer P. Morton; Indrani Manoharan; David M. Nelson; Nigel B. Jamieson; Jeff S. Pawlikowski; Tony McBryan; Brendan Doyle; Colin J. McKay; Karin A. Oien; Greg H. Enders; Rugang Zhang; Owen J. Sansom; Peter D. Adams

^{\rm{R172H/fl}}

Collaboration


Dive into the Brendan Doyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Kolch

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Timpson

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge