Brendan E. Hickie
Trent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brendan E. Hickie.
Human and Ecological Risk Assessment | 2003
Robie W. Macdonald; Donald Mackay; Yi-Fan Li; Brendan E. Hickie
Climate change and climate variability affect risk from contaminants by changing exposure to chemicals, either through the alteration of pathways or through alteration of environmental concentrating mechanisms. The alteration of pathways is affected by changing the balance between transport and deposition. Although the influence of temperature on multimedia partitioning can be modelled successfully, estimating alteration in other climate components such as distribution and form of precipitation provides a much greater challenge. To understand how climate change affects contaminant concentrations, we distinguish two types of environmental concentrating processes — solvent switching and solvent depletion. The first process, which is simply chemical partitioning, runs spontaneously toward equilibrium. This process alone can explain hemispheric-scale distributions of hexachlorocyclohexane, which partitions strongly into water, and high concentrations of organochlorines at the bottom of aquatic foodwebs. The latter process involves the maintenance of contaminant burdens during the loss of solvent, with the aquatic foodweb providing one of the better-known examples. Solvent reducing processes can produce contaminant concentrations well above thermodynamic equilibrium with a number of important examples provided by phase changes in water (freezing, snow melting). These solvent-reducing processes, which are poorly studied, provide some of the best circumstances for climate change to produce alteration in persistent organic pollutants exposure pathways.
Chemosphere | 2000
Donald Mackay; Brendan E. Hickie
A mass balance model has been developed and calibrated to describe the sources, transport and fate of seven polycyclic aromatic hydrocarbons (PAHs; anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, fluoranthene, phenanthrene, and pyrene) in the water and sediments of, and atmosphere over Lac Saint Louis, Quebec. The model uses specified input rates from background advective flows and emissions from the Alcan aluminum smelting facility at Beauharnois to deduce atmospheric concentrations and rates of wet and dry deposition to the three segment lake. Concentrations in water and sediment as well as relevant mass fluxes and residence times are computed and compared satisfactorily with monitoring data for five of the seven PAHs. Underestimation of concentrations for anthracene and phenanthrene is attributed to unquantified additional sources. The sources of the PAH burden in the lake are apportioned, and the implications of these results are discussed including likely response times to changes in loadings. It is suggested that this mass balance approach is more widely applicable to situations in which water bodies are impacted by a variety of contaminant sources.
Environmental Science & Technology | 2012
Karen L. Foster; Gary A. Stern; Monica A. Pazerniuk; Brendan E. Hickie; Wojciech Walkusz; Feiyue Wang; Robie W. Macdonald
While much research has been carried out on mercury in large marine mammals and associated food webs in northern regions, comparatively less has been conducted on lower trophic levels including zooplankton and the subsequent transfer to predators, which marks the entry of mercury into northern marine food webs. We present here the first database for mercury uptake and transfer exclusively within zooplankton food webs in northern marine waters. We have investigated both total (THg) and monomethylmercury (MMHg) concentrations, and isotopic signatures (δ(15)N and δ(13)C) in individual zooplankton taxa collected over a period of eight years (2003-2010) from across Hudson Bay (including Hudson Strait and Foxe Basin) as part of research icebreaker cruises. δ(15)N values ranged from 3.4 to 14.0‰, implying trophic levels ranging from 1 to 4, and THg concentrations ranged from 5 to 242 ng g(-1) dw. Food web linkages were identified within the data set, and mercury biomagnification was evident both with THg and MMHg concentrations increasing from prey to predator, and with trophic magnification factors (TMFs). Total mercury and MMHg transfer in a unique prey-predator linkage (Limacina helicina-Clione limacina) are investigated and discussed with regard to known physiological and biochemical characteristics. The results suggest that exposure to mercury at higher trophic levels including humans can be affected by processes at the bottom of Arctic marine food webs.
Environmental Science & Technology | 2012
Juan José Alava; Peter S. Ross; Cara L. Lachmuth; John K. B. Ford; Brendan E. Hickie; Frank A. P. C. Gobas
The development of an area-based polychlorinated biphenyl (PCB) food-web bioaccumulation model enabled a critical evaluation of the efficacy of sediment quality criteria and prey tissue residue guidelines in protecting fish-eating resident killer whales of British Columbia and adjacent waters. Model-predicted and observed PCB concentrations in resident killer whales and Chinook salmon were in good agreement, supporting the models application for risk assessment and criteria development. Model application shows that PCB concentrations in the sediments from the resident killer whales Critical Habitats and entire foraging range leads to PCB concentrations in most killer whales that exceed PCB toxicity threshold concentrations reported for marine mammals. Results further indicate that current PCB sediment quality and prey tissue residue criteria for fish-eating wildlife are not protective of killer whales and are not appropriate for assessing risks of PCB-contaminated sediments to high trophic level biota. We present a novel methodology for deriving sediment quality criteria and tissue residue guidelines that protect biota of high trophic levels under various PCB management scenarios. PCB concentrations in sediments and in prey that are deemed protective of resident killer whale health are much lower than current criteria values, underscoring the extreme vulnerability of high trophic level marine mammals to persistent and bioaccumulative contaminants.
Environmental Toxicology and Chemistry | 2014
Wei Wang; R. Douglas Evans; Brendan E. Hickie; Kirsti Rouvinen-Watt; Hayla E. Evans
Concentrations of metals in hair are used often to develop pharmacokinetic models for both animals and humans. Although data on uptake are available, elimination kinetics are less well understood; stable isotope tracers provide an excellent tool for measuring uptake and elimination kinetics. In the present study, methylmercury concentrations through time were measured in the hair and blood of mink (Neovison vison) during a controlled 60-d feeding experiment. Thirty-four mink were fed a standard fish-based diet for 14 d, at the end of which (day 0), 4 mink were sacrificed to determine baseline methylmercury (MeHg) concentrations. From day 0 to day 10, the remaining mink were fed a diet consisting of the base diet supplemented with 0.513 ± 0.013 µg Me(199) Hg/g and 0.163 ± 0.003 µg Me(201) Hg/g. From day 10 to day 60, mink were fed the base diet supplemented with 0.175 ± 0.024 µg Me(201) Hg/g. Animals were sacrificed periodically to determine accumulation of Me(201) Hg in blood and hair over the entire 60-d period and the elimination of Me(199) Hg over the last 50 d. Hair samples, collected from each mink and cut into 2.0-mm lengths, indicate that both isotopes of MeHg appeared in the hair closest to the skin at approximately day 10, with concentrations in the hair reaching steady state from day 39 onward. The elimination rate of Me(199) Hg from the blood was 0.05/d, and the ratio of MeHg in the hair to blood was 119. A large fraction of MeHg (22% to >100%) was stored in the hair, suggesting that in fur-bearing mammals the hair is a major route of elimination of MeHg from the body.
Environmental Science & Technology | 2013
Brendan E. Hickie; Marc A. Cadieux; Kimberly N. Riehl; Gregory D. Bossart; Juan José Alava; Patricia A. Fair
An individually based (IB) model to predict PCB concentrations in the bottlenose dolphin population of Charleston, SC, USA, was developed with the aim to gain a better understanding of the bioaccumulation behavior and health risk of dietary PCBs across the population and their prey. PCB concentrations predicted in male and female bottlenose dolphin were in good agreement with observed tissue concentrations corroborating the reliability of the model performance and its utility in gaining a more complete view of risk. The modeled cumulative distribution of ΣPCB concentrations for the population with a breakdown into juvenile, adult male, and female subclasses ranged from 3600 to 144,400 ng/g lipid with 66% to >80% of the population exceeding the established threshold for adverse health effects of 17,000 ng/g lipid. The model estimated that a dietary PCB concentration not exceeding 5.1 ng/g wet wt would be required to reach a condition where 95% of the population would have tissue levels below the health effect threshold. The IB model for PCBs in bottlenose dolphins provides a novel approach to estimating the maximum acceptable dietary concentration for PCBs, a central and important factor to protect these apex predators. The model also enables effective prediction of concentrations in dolphins from fish contaminant surveys which are logistically easier and less costly to collect.
Sar and Qsar in Environmental Research | 1997
Donald Mackay; A. Di Guardo; Brendan E. Hickie; Eva Webster
Abstract A review is presented of factors which have combined to create an incentive for the applying of mass balance modelling concepts to elucidating the sources, fate, and effects of contaminants in the environment. These factors include increased understanding of environmental processes, availability of better data on contaminant properties and toxicology, changes in regulatory approaches, growth in computing power, and the demand for comprehensive education on environmental issues. It is suggested that a set of compatible models may be emerging which treat QSARs and QSPRs; far-field, regional and global processes; near-field or local processes including bioaccumulation; and finally human exposure. Recommendations are made for actions which will enhance the use of mass balance models as an integral part of increasing our scientific understanding of chemical behaviour in the environment and especially contributing to improved chemical stewardship in the environment.
Environmental Toxicology and Pharmacology | 2016
R. Douglas Evans; Brendan E. Hickie; Kirsti Rouvinen-Watt; Wei Wang
Despite the importance of methylmercury (MeHg) as a neurotoxin, we have relatively few good data on partitioning and kinetics of MeHg among organs, particularly across the blood-brain barrier, for mammals that consume large quantities of fish. The objective of this study was to determine the partition coefficients between blood and brain, liver and kidney and fur for MeHg under steady-state conditions and to measure the half-lives for MeHg in these organs. Captive mink (Neovison vison) were fed a diet enriched with two stable isotopes of Hg, Me(199)Hg and Me(201)Hg for a period of 60 days. After a period of 10 days the diet was changed to contain only Me(201)Hg so that, between days 10 and 60, we were able to measure both uptake and elimination rates from blood, brain, liver kidney and fur. Liver and kidney response was very rapid, closely following changes in blood concentrations but there was a small lag time between peak blood concentrations and peak brain concentrations. Half-lives for MeHg were 15.4, 10.2 and 13.4 days for brain, liver and kidney, respectively. There was no measurable conversion of the MeHg to inorganic Hg (IHg) in the brain over the 60 day period, unlike in liver and kidney.
Chemosphere | 2016
R.D. Evans; N.M. Grochowina; Niladri Basu; E.M. O'Connor; Brendan E. Hickie; Kirsti Rouvinen-Watt; H.E. Evans; Hing Man Chan
Captive, juvenile, ranch-bred, male mink (Neovison vison) were fed diets containing various concentrations of methyl-mercury (MeHg) and selenium (Se) for a period of 13 weeks and then sacrificed to determine total Hg levels in fur, blood, brain, liver and kidneys and total Se concentrations in brain tissue. As MeHg concentrations in the diet increased, concentrations of total Hg in the tissues also increased with the highest level occurring in the fur > liver = kidney > brain > blood. Concentrations of Hg in the fur were correlated (r(2) > 0.97) with liver, kidney, blood and brain concentrations. The addition of Se to the mink diet did not appear to affect most tissue concentrations of total Hg nor did it affect the partitioning of Hg between the liver:blood, kidney:blood and brain:blood; however, partitioning of Hg between fur and blood was apparently affected.
Frontiers in Nutrition | 2017
Lena Gmelch; Holger Hintelmann; Brendan E. Hickie; Hermine Kienberger; Gary A. Stern; Michael Rychlik
Many northern Inuit communities rely on traditional food as major source of nourishment. An essential part of the traditional Arctic diet is marine mammals such as ringed seals or beluga. Being top predators, these animals are often highly contaminated with various toxins. In contrast, some tissues of marine mammals are also characterized by high amounts of n3-PUFAs (omega-3 polyunsaturated fatty acids). Here, we try to balance the risks associated with the consumption of different tissue types of ringed seals in terms of the neurotoxin monomethylmercury (MMHg) with the benefits of consumption due to high n3-PUFA concentrations. Fetuses are at the highest risk of neurological impairments because MMHg can easily cross the placental barrier. Therefore, women of childbearing age served as an indicator population for especially susceptible subpopulations. We calculated maximal weekly maternal portions sizes if mutual consumption of muscle and blubber tissue or liver and blubber tissue was assumed. Those weekly portion sizes resulted in an estimated overall IQ point gain of infants of 0, whereas the consumption of liver or muscle tissue without blubber could lead to an IQ loss. In contrast to former studies, our data do not generally prohibit the consumption of liver tissue. Instead, our results suggest that a maximal weekly consumption of 125 g liver tissue together with 1 g of blubber tissue is acceptable and does not lead to neurological damages in the long term. Similarly, the consumption of maximal 172 g muscle tissue can be balanced by the mutual consumption of 1 g blubber tissue.