Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brendan Z. Allison is active.

Publication


Featured researches published by Brendan Z. Allison.


Frontiers in Neuroscience | 2010

The hybrid BCI

Gert Pfurtscheller; Brendan Z. Allison; Clemens Brunner; Günther Bauernfeind; Teodoro Solis-Escalante; Reinhold Scherer; Thorsten O. Zander; Gernot Mueller-Putz; Christa Neuper; Niels Birbaumer

Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals recorded directly from the brain; (ii) there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii) real time processing; and (iv) the user must obtain feedback. This paper introduces hybrid BCIs that have already been published or are in development. We also introduce concepts for future work. We describe BCIs that classify two EEG patterns: one is the event-related (de)synchronisation (ERD, ERS) of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP). Hybrid BCIs can either process their inputs simultaneously, or operate two systems sequentially, where the first system can act as a “brain switch”. For example, we describe a hybrid BCI that simultaneously combines ERD and SSVEP BCIs. We also describe a sequential hybrid BCI, in which subjects could use a brain switch to control an SSVEP-based hand orthosis. Subjects who used this hybrid BCI exhibited about half the false positives encountered while using the SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS). Hybrid BCIs can also use one brain signal and a different type of input. This additional input can be an electrophysiological signal such as the heart rate, or a signal from an external device such as an eye tracking system.


Archive | 2010

Brain-computer interfaces

Adriane B. Randolph; Melody M. Moore; Brendan Z. Allison

Brain-computer interfaces , Brain-computer interfaces , کتابخانه مرکزی دانشگاه علوم پزشکی تهران


Expert Review of Medical Devices | 2007

Brain–computer interface systems: progress and prospects

Brendan Z. Allison; Elizabeth Winter Wolpaw; Jonathan R. Wolpaw

Brain–computer interface (BCI) systems support communication through direct measures of neural activity without muscle activity. BCIs may provide the best and sometimes the only communication option for users disabled by the most severe neuromuscular disorders and may eventually become useful to less severely disabled and/or healthy individuals across a wide range of applications. This review discusses the structure and functions of BCI systems, clarifies terminology and addresses practical applications. Progress and opportunities in the field are also identified and explicated.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2003

ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system

Brendan Z. Allison; Jaime A. Pineda

A brain-computer interface (BCI) system may allow a user to communicate by selecting one of many options. These options may be presented in a matrix. Larger matrices allow a larger vocabulary, but require more time for each selection. In this study, subjects were asked to perform a target detection task using matrices appropriate for a BCI. The study sought to explore the relationship between matrix size and EEG measures, target detection accuracy, and user preferences. Results indicated that larger matrices evoked a larger P300 amplitude, and that matrix size did not significantly affect performance or preferences.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2011

An SSVEP BCI to Control a Hand Orthosis for Persons With Tetraplegia

Rupert Ortner; Brendan Z. Allison; Gerd Korisek; Herbert Gaggl; Gert Pfurtscheller

Brain-computer interface (BCI) systems allow people to send messages or commands without moving, and hence can provide an alternative communication and control channel for people with limited motor function. In this study, we demonstrate a BCI system for orthosis control. Our BCI was asynchronous, meaning that subjects could move the orthosis whenever they wanted, instead of pacing themselves to external cues. Seven subjects each performed two tasks with a BCI that relied on steady state visual evoked potentials (SSVEPs). Although none of the subjects had any training, six subjects showed good control with a positive predictive value (PPV) higher than 60%. The overall PPV for all subjects reached 78% ±10%. However, the false positive rate was high, and some subjects dislike the flickering lights required in SSVEP BCIs. In follow-up work, we hope to reduce both the false positive rate and the annoyance produced by flickering lights by hybridizing this BCI with a “brain switch,” which could allow people to turn the SSVEP system on or off using a second type of brain activity when they do not wish to control the orthosis. We also hope to validate this approach with people with tetraplegia.


Frontiers in Neuroengineering | 2012

P300 brain computer interface: current challenges and emerging trends

Reza Fazel-Rezai; Brendan Z. Allison; Christoph Guger; Eric W. Sellers; Sonja C. Kleih; Andrea Kübler

A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility.


Brain-Computer Interfaces | 2010

Could Anyone Use a BCI

Brendan Z. Allison; Christa Neuper

Brain-computer interface (BCI) systems can provide communication and control for many users, but not all users. This problem exists across different BCI approaches; a “universal” BCI that works for everyone has never been developed. Instead, about 20% of subjects are not proficient with a typical BCI system. Some groups have called this phenomenon “BCI illiteracy”. Some possible solutions have been explored, such as improved signal processing, training, and new tasks or instructions. These approaches have not resulted in a BCI that works for all users, probably because a small minority of users cannot produce detectable patterns of brain activity necessary to a particular BCI approach. We also discuss an underappreciated solution: switching to a different BCI approach. While the term “BCI illiteracy” elicits interesting comparisons between BCIs and natural languages, many issues are unclear. For example, comparisons across different studies have been problematic since different groups use different performance thresholds, and do not account for key factors such as the number of trials or size of the BCI’s alphabet. We also discuss challenges inherent in establishing widely used terms, definitions, and measurement approaches to facilitate discussions and comparisons among different groups.


Journal of Neural Engineering | 2011

An adaptive P300-based control system

Jing Jin; Brendan Z. Allison; Eric W. Sellers; Clemens Brunner; Petar Horki; Xingyu Wang; Christa Neuper

An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e. 12 columns and 7 rows). The 9- and 14-flash A and B paradigms present all items of the 12 × 7 matrix three times using either 9 or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing the interference from items adjacent to targets. 14-flash A also reduced the adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that the accuracy and bit rate of the adaptive system were higher than those of the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naive users.


Archive | 2009

Brain-Computer Interfaces: A Gentle Introduction

Bernhard Graimann; Brendan Z. Allison; Gert Pfurtscheller

Stardate 3012.4: The U.S.S. Enterprise has been diverted from its original course to meet its former captain Christopher Pike on Starbase 11. When Captain Jim Kirk and his crew arrive, they find out that Captain Pike has been severely crippled by a radiation accident. As a consequence of this accident Captain Pike is completely paralyzed and confined to a wheelchair controlled by his brain waves. He can only communicate through a light integrated into his wheelchair to signal the answers “yes” or “no”. Commodore Mendez, the commander of Starbase 11, describes the condition of Captain Pike as follows: “He is totally unable to move, Jim. His wheelchair is constructed to respond to his brain waves. He can turn it, move it forwards, backwards slightly. Through a flashing light he can say ‘yes’ or ‘no’. But that’s it, Jim. That is as much as the poor ever can do. His mind is as active as yours and mine, but it’s trapped in a useless vegetating body. He’s kept alive mechanically. A battery driven heart. …”


Frontiers in Neuroscience | 2012

Comparison of dry and gel based electrodes for p300 brain-computer interfaces.

Christoph Guger; Gunther Krausz; Brendan Z. Allison; Guenter Edlinger

Most brain–computer interfaces (BCIs) rely on one of three types of signals in the electroencephalogram (EEG): P300s, steady-state visually evoked potentials, and event-related desynchronization. EEG is typically recorded non-invasively with electrodes mounted on the human scalp using conductive electrode gel for optimal impedance and data quality. The use of electrode gel entails serious problems that are especially pronounced in real-world settings when experts are not available. Some recent work has introduced dry electrode systems that do not require gel, but often introduce new problems such as comfort and signal quality. The principal goal of this study was to assess a new dry electrode BCI system in a very common task: spelling with a P300 BCI. A total of 23 subjects used a P300 BCI to spell the word “LUCAS” while receiving real-time, closed-loop feedback. The dry system yielded classification accuracies that were similar to those obtained with gel systems. All subjects completed a questionnaire after data recording, and all subjects stated that the dry system was not uncomfortable. This is the first field validation of a dry electrode P300 BCI system, and paves the way for new research and development with EEG recording systems that are much more practical and convenient in field settings than conventional systems.

Collaboration


Dive into the Brendan Z. Allison's collaboration.

Top Co-Authors

Avatar

Christoph Guger

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Clemens Brunner

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christa Neuper

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rupert Ortner

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jing Jin

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xingyu Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gert Pfurtscheller

Graz University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge