Brendon J. Monahan
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brendon J. Monahan.
Applied and Environmental Microbiology | 2009
Matthew J. Nicholson; Albert Koulman; Brendon J. Monahan; Beth L. Pritchard; Gary A. Payne; Barry Scott
ABSTRACT Aflatrem is a potent tremorgenic toxin produced by the soil fungus Aspergillus flavus, and a member of a structurally diverse group of fungal secondary metabolites known as indole-diterpenes. Gene clusters for indole-diterpene biosynthesis have recently been described in several species of filamentous fungi. A search of Aspergillus complete genome sequence data identified putative aflatrem gene clusters in the genomes of A. flavus and Aspergillus oryzae. In both species the genes for aflatrem biosynthesis cluster at two discrete loci; the first, ATM1, is telomere proximal on chromosome 5 and contains a cluster of three genes, atmG, atmC, and atmM, and the second, ATM2, is telomere distal on chromosome 7 and contains five genes, atmD, atmQ, atmB, atmA, and atmP. Reverse transcriptase PCR in A. flavus demonstrated that aflatrem biosynthesis transcript levels increased with the onset of aflatrem production. Transfer of atmP and atmQ into Penicillium paxilli paxP and paxQ deletion mutants, known to accumulate paxilline intermediates paspaline and 13-desoxypaxilline, respectively, showed that AtmP is a functional homolog of PaxP and that AtmQ utilizes 13-desoxypaxilline as a substrate to synthesize aflatrem pathway-specific intermediates, paspalicine and paspalinine. We propose a scheme for aflatrem biosynthesis in A. flavus based on these reconstitution experiments in P. paxilli and identification of putative intermediates in wild-type cultures of A. flavus.
Applied and Environmental Microbiology | 2004
Shuguang Zhang; Brendon J. Monahan; Jan S. Tkacz; Barry Scott
ABSTRACT Aflatrem is a potent tremorgenic mycotoxin produced by the soil fungus Aspergillus flavus and is a member of a large structurally diverse group of secondary metabolites known as indole-diterpenes. By using degenerate primers for conserved domains of fungal geranylgeranyl diphosphate synthases, we cloned two genes, atmG and ggsA (an apparent pseudogene), from A. flavus. Adjacent to atmG are two other genes, atmC and atmM. These three genes have 64 to 70% amino acid sequence similarity and conserved synteny with a cluster of orthologous genes, paxG, paxC, and paxM, from Penicillium paxilli which are required for indole-diterpene biosynthesis. atmG, atmC, and atmM are coordinately expressed, with transcript levels dramatically increasing at the onset of aflatrem biosynthesis. A genomic copy of atmM can complement a paxM deletion mutant of P. paxilli, demonstrating that atmM is a functional homolog of paxM. Thus, atmG, atmC, and atmM are necessary, but not sufficient, for aflatrem biosynthesis by A. flavus. This provides the first genetic evidence for the biosynthetic pathway of aflatrem in A. flavus.
Applied and Environmental Microbiology | 2002
Rosie E. Bradshaw; Deepak Bhatnagar; Rebecca J. Ganley; Carmel J. Gillman; Brendon J. Monahan; Janet M. Seconi
ABSTRACT Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatoxin and sterigmatocystin gene clusters with predicted activities of a ketoreductase (dotA), oxidase (dotB), major facilitator superfamily transporter (dotC), and thioesterase (dotD). A D. pini dotA mutant was made by targeted gene replacement and shown to be severely impaired in dothistromin production, confirming that dotA is involved in dothistromin biosynthesis. Accumulation of versicolorin A (a precursor of aflatoxin) by the dotA mutant confirms that the dotA gene product is involved in an aflatoxin-like biosynthetic pathway. Since toxin genes have been found to be clustered in fungi in every case analyzed so far, it is speculated that the four dot genes may comprise part of a dothistromin biosynthetic gene cluster. A fifth gene, ddhA, is not a homolog of aflatoxin genes and could be at one end of the dothistromin cluster. These genes will allow comparative biochemical and genetic studies of the aflatoxin and dothistromin biosynthetic pathways and may also lead to new ways to control Dothistroma needle blight.
Journal of Proteome Research | 2013
Luxi Zhang; Ian Peter Holmes; Falko Hochgräfe; Scott Raymond Walker; Naveid Ali; Emily S. Humphrey; Jianmin Wu; Melanie de Silva; Wilhelmus J A Kersten; Theresa Connor; Hendrik Falk; Lynda Allan; Ian P. Street; John D. Bentley; Patricia A. Pilling; Brendon J. Monahan; Thomas S. Peat; Roger J. Daly
Kinase enrichment utilizing broad-spectrum kinase inhibitors enables the identification of large proportions of the expressed kinome by mass spectrometry. However, the existing inhibitors are still inadequate in covering the entire kinome. Here, we identified a novel bisanilino pyrimidine, CTx-0294885, exhibiting inhibitory activity against a broad range of kinases in vitro, and further developed it into a Sepharose-supported kinase capture reagent. Use of a quantitative proteomics approach confirmed the selectivity of CTx-0294885-bound beads for kinase enrichment. Large-scale CTx-0294885-based affinity purification followed by LC-MS/MS led to the identification of 235 protein kinases from MDA-MB-231 cells, including all members of the AKT family that had not been previously detected by other broad-spectrum kinase inhibitors. Addition of CTx-0294885 to a mixture of three kinase inhibitors commonly used for kinase-enrichment increased the number of kinase identifications to 261, representing the largest kinome coverage from a single cell line reported to date. Coupling phosphopeptide enrichment with affinity purification using the four inhibitors enabled the identification of 799 high-confidence phosphosites on 183 kinases, ∼10% of which were localized to the activation loop, and included previously unreported phosphosites on BMP2K, MELK, HIPK2, and PRKDC. Therefore, CTx-0294885 represents a powerful new reagent for analysis of kinome signaling networks that may facilitate development of targeted therapeutic strategies. Proteomics data have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with the data set identifier PXD000239.
Journal of Biomolecular Screening | 2011
Hendrik Falk; Theresa Connor; Hong Yang; Karen J. Loft; Joanne L. Alcindor; George Nikolakopoulos; Regina Surjadi; John D. Bentley; Meghan Hattarki; Olan Dolezal; James M. Murphy; Brendon J. Monahan; Thomas S. Peat; Tim Thomas; Jonathan B. Baell; John P. Parisot; Ian P. Street
Epigenetic aberrations are increasingly regarded as key factors in cancer progression. Recently, deregulation of histone acetyltransferases (HATs) has been linked to several types of cancer. Monocytic leukemia zinc finger protein (MOZ) is a member of the MYST family of HATs, which regulate gene expression in cell proliferation and differentiation. Deregulation of these processes through constitutively active MOZ fusion proteins gives rise to the formation of leukemic stem cells, rendering MOZ an excellent target for treating myeloid leukemia. The authors implemented a hit discovery campaign to identify small-molecule inhibitors of MOZ-HAT activity. They developed a robust, homogeneous assay measuring the acetylation of synthetic histone peptides. In a primary screening campaign testing 243 000 lead-like compounds, they identified inhibitors from several chemical classes. Secondary assays were used to eliminate assay-interfering compounds and prioritize confirmed hits. This study establishes a new high-throughput assay for HAT activity and could provide the foundation for the development of a new class of drugs for the treatment of leukemias.
Biochemistry | 2013
Ai-Leen Chan; Tamar Grossman; Valentina Zuckerman; Dafne campigli di giammartino; Ofra Moshel; Martin Scheffner; Brendon J. Monahan; Patricia A. Pilling; Yong-hui Jiang; Sue Haupt; Ora Schueler-Furman; Yagl Haupt
In human papillomavirus (HPV)-infected cells, the p53 tumor suppressor is tightly regulated by the HPV-E6-E6AP complex, which promotes it for proteasomal degradation. We previously demonstrated that c-Abl tyrosine kinase protects p53 from HPV-E6-E6AP complex-mediated ubiquitination and degradation under stress conditions. However, the underlying mechanism was not defined. In this study, we explored the possibility that c-Abl targets E6AP and thereby protects p53. We demonstrated that c-Abl interacts with and phosphorylates E6AP. We determined that the E3 ligase activity of E6AP is impaired in response to phosphorylation by c-Abl. We mapped the phosphorylation site to tyrosine 636 within the HECT catalytic domain of E6AP, and using substitution mutants, we showed that this residue dictates the E3 ligase activity of E6AP, in a substrate-specific manner. On the basis of the crystal structure of the HECT domain of E6AP, we propose a model in which tyrosine 636 plays a regulatory role in the oligomerization of E6AP, which is a process implicated in its E3 ubiquitin ligase activity. Our results suggest that c-Abl protects p53 from HPV-E6-E6AP complex-mediated degradation by phosphorylating E6AP and impairing its E3 ligase activity, thus providing a molecular explanation for the stress-induced protection of p53 in HPV-infected cells.
Toxins | 2013
Barry Scott; Carolyn A. Young; Sanjay Saikia; Lisa K. McMillan; Brendon J. Monahan; Albert Koulman; Jonathan Astin; Carla J. Eaton; Andrea Bryant; Ruth E. Wrenn; Sarah C. Finch; Brian A. Tapper; Emily J. Parker; Geoffrey B. Jameson
The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis.
Cancer Research | 2016
Mariam Mansour; Sue Haupt; Ai-Leen Chan; Nathan Godde; Alexandra Rizzitelli; Sherene Loi; Franco Caramia; Siddhartha Deb; Elena A. Takano; Mark J. Bishton; Cameron N. Johnstone; Brendon J. Monahan; Yarra Levav-Cohen; Yong-hui Jiang; Alpha S. Yap; Stephen B. Fox; Ora Bernard; Robin L. Anderson; Ygal Haupt
Metastatic disease is the major cause of breast cancer-related death and despite many advances, current therapies are rarely curative. Tumor cell migration and invasion require actin cytoskeletal reorganization to endow cells with capacity to disseminate and initiate the formation of secondary tumors. However, it is still unclear how these migratory cells colonize distant tissues to form macrometastases. The E6-associated protein, E6AP, acts both as an E3 ubiquitin-protein ligase and as a coactivator of steroid hormone receptors. We report that E6AP suppresses breast cancer invasiveness, colonization, and metastasis in mice, and in breast cancer patients, loss of E6AP associates with poor prognosis, particularly for basal breast cancer. E6AP regulates actin cytoskeletal remodeling via regulation of Rho GTPases, acting as a negative regulator of ECT2, a GEF required for activation of Rho GTPases. E6AP promotes ubiquitination and proteasomal degradation of ECT2 for which high expression predicts poor prognosis in breast cancer patients. We conclude that E6AP suppresses breast cancer metastasis by regulating actin cytoskeleton remodeling through the control of ECT2 and Rho GTPase activity. These findings establish E6AP as a novel suppressor of metastasis and provide a compelling rationale for inhibition of ECT2 as a therapeutic approach for patients with metastatic breast cancer. Cancer Res; 76(14); 4236-48. ©2016 AACR.
Science Signaling | 2017
Cristina Gamell; Twishi Gulati; Yaara Levav-Cohen; Richard J. Young; Hongdo Do; Pat Pilling; Elena A. Takano; Neil Watkins; Stephen B. Fox; Prudence A. Russell; Doron Ginsberg; Brendon J. Monahan; Gavin Wright; Alexander Dobrovic; Sue Haupt; Ben Solomon; Ygal Haupt
E6AP exhibits tumor suppressor activity that may help stratify NSCLC patients. INK4/ARF repression in lung cancer by loss of E6AP The abundance of the cell cycle decelerator p16INK4a, encoded at the INK4/ARF locus, is decreased in various cancers. Gamell et al. found that the absence of p16INK4a in some patients is explained by the lack of the E3 ubiquitin ligase E6AP. E6AP bound to and inhibited the activity of transcription factor E2F1; a decrease in E6AP abundance enabled E2F1-mediated expression of the cell cycle promoter CDC6, which encodes a transcriptional regulator that represses INK4/ARF expression. The findings identify a tumor-suppressive role for E6AP in lung cancer and suggest that targeting the E2F1-CDC6 pathway might slow tumor growth in some NSCLC patients. The tumor suppressor p16INK4a, one protein encoded by the INK4/ARF locus, is frequently absent in multiple cancers, including non–small cell lung cancer (NSCLC). Whereas increased methylation of the encoding gene (CDKN2A) accounts for its loss in a third of patients, no molecular explanation exists for the remainder. We unraveled an alternative mechanism for the silencing of the INK4/ARF locus involving the E3 ubiquitin ligase and transcriptional cofactor E6AP (also known as UBE3A). We found that the expression of three tumor suppressor genes encoded in the INK4/ARF locus (p15INK4b, p16INK4a, and p19ARF) was decreased in E6AP−/− mouse embryo fibroblasts. E6AP induced the expression of the INK4/ARF locus at the transcriptional level by inhibiting CDC6 transcription, a gene encoding a key repressor of the locus. Luciferase assays revealed that E6AP inhibited CDC6 expression by reducing its E2F1-dependent transcription. Chromatin immunoprecipitation analysis indicated that E6AP reduced the amount of E2F1 at the CDC6 promoter. In a subset of NSCLC samples, an E6AP-low/CDC6-high/p16INK4a-low protein abundance profile correlated with low methylation of the gene encoding p16INK4a (CDKN2A) and poor patient prognosis. These findings define a previously unrecognized tumor-suppressive role for E6AP in NSCLC, reveal an alternative silencing mechanism of the INK4/ARF locus, and reveal E6AP as a potential prognostic marker in NSCLC.
Cancer Research | 2015
Hendrik Falk; Richard Foitzik; Elizabeth Allan; Melanie deSilva; Hong Yang; Ylva E. Bozikis; Marica Nikac; Scott Raymond Walker; Michelle A. Camerino; Ben J. Morrow; Alexandra Elizabeth Stupple; Rachel Lagiakos; Jo-Anne Pinson; Romina Lessene; Wilhelmus J A Kersten; Danny Ganame; Ian Peter Holmes; Gill E. Lunniss; Matthew Chung; Stefan J. Hermans; Michael W. Parker; Alison Thistlethwaite; Karen L. White; Susan A. Charman; Brendon J. Monahan; Patricia A. Pilling; Julian Grusovin; Thomas S. Peat; Stefan Eugen Sonderegger; Emma Toulmin
Increased expression or dysregulation of protein arginine methyltransferase 5 (PRMT5) activity is associated with poor prognosis in many cancers. Through increased methylation of epigenetic and non-epigenetic targets, the aberrant activity of PRMT5 has been associated with many pro-tumourigenic cellular changes such as, increased levels of protein synthesis, dysregulation of cell cycle, cellular adaptation to hypoxic conditions, and suppression of normal cell death pathways. Genetic studies suggest that suppression of PRMT5 activity can reverse many of these pro-tumourigenic effects making PRMT5 an attractive drug discovery target. We screened a library of 350,000 lead-like compounds with a biochemical assay measuring the methylation of a histone H4 peptide by the recombinant human PRMT5/MEP50 complex. Biochemical and biophysical profiling of the inhibitory compounds indicated that several distinct binding modes were exhibited by the different chemical scaffolds. Inhibitors displayed competitive, noncompetitive or uncompetitive interactions with respect to S-adenosyl methionine and the peptide substrate. Medicinal chemistry developed several classes of potent, highly selective inhibitors of PRMT5 methyltransferase activity from the hit set. The optimised tool compound, CTx-034, is a potent inhibitor of PRMT5 methyl transferase activity (KD = 2 nM), which is highly selective (>100-fold) versus a panel of 18 methyltransferases (including 6 PRMT family members), 11 lysine demethylases, and 15 safety related targets (GPCRs, ion channels, enzymes). Treatment of cancer cell lines with CTx-034 reduces cellular levels of symmetrically dimethylated H4 Arginine 3 (H4R3me2s), in a dose dependent manner (IC50 = 4 nM) to levels undetectable by Western blot. Furthermore, within this chemical series the ability of compounds to reduce cellular levels of H4R3me2s closely correlates with PRMT5 inhibitory activity supporting PRMT5 as the cellular target of these compounds, and suggesting that PRMT5 is the major writer of this histone mark in many cancer cell lines. CTx-034 also inhibits the symmetric dimethylation of arginine on other histone and non-histone cellular substrates of PRMT5, including H3R2me2s and SmD1. Conversely, CTx-034 treatment does not reduce levels of H4R3 asymmetric dimethylation, a histone mark catalysed by PRMT1. Finally, CTx-034 has good oral bioavailability and pharmacokinetic properties in rodents and twice-daily dosing (10 - 100 mg/kg) over 10-14 days produces a dose dependent reduction of the H4R3me2s mark in bone marrow cells and peripheral white blood cells. This treatment is well tolerated by the mice, with no significant reduction in body weight or changes in haematological parameters observed. CTx-034 provides an excellent tool compound for cellular and in vivo proof of concept studies. Citation Format: Hendrik Falk, Richard C. Foitzik, Elizabeth Allan, Melanie deSilva, Hong Yang, Ylva E. Bozikis, Marica Nikac, Scott R. Walker, Michelle A. Camerino, Ben J. Morrow, Alexandra E. Stupple, Rachel Lagiakos, Jo-Anne Pinson, Romina Lessene, Wilhelmus JA Kersten, Danny G. Ganame, Ian P. Holmes, Gill E. Lunniss, Matthew Chung, Stefan J. Hermans, Michael W. Parker, Alison Thistlethwaite, Karen White, Susan A. Charman, Brendon J. Monahan, Patricia Pilling, Julian Grusovin, Thomas S. Peat, Stefan Sonderegger, Emma Toulmin, Stephen M. Jane, David J. Curtis, Paul A. Stupple, Ian P. Street. PRMT5 inhibitors as novel treatment for cancers. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 5371. doi:10.1158/1538-7445.AM2015-5371
Collaboration
Dive into the Brendon J. Monahan's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs