Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brendon Y. Chua is active.

Publication


Featured researches published by Brendon Y. Chua.


Molecular Pharmaceutics | 2012

Chitosan Microparticles and Nanoparticles as Biocompatible Delivery Vehicles for Peptide and Protein-Based Immunocontraceptive Vaccines

Brendon Y. Chua; Mohammad Al Kobaisi; Weiguang Zeng; David E. Mainwaring; David C. Jackson

It has become increasingly recognized that polymer particle size can have a profound effect on the interactions of particle-based vaccines with antigen presenting cells (APCs) thereby influencing and modulating ensuing immune responses. With the aim of developing chitosan particle-based immunocontraceptive vaccines, we have compared the use of chitosan-based nanoparticles and chitosan-based microparticles as vaccine delivery vehicles for vaccine candidates based on luteinizing hormone-releasing hormone (LHRH). Particles, functionalized with chloroacetyl groups, which allows the covalent attachment of thiol-containing antigens, were able to adsorb ~60-70% of their weight of peptide-based antigen and 10-20% of their weight of protein-based antigen. Quantitation by amino acid analysis of antigen associated with particles demonstrated a correlation between associated antigen and the degree of chloracetylation of particles. Visualization of fluorescently labeled antigen-loaded particles by confocal microscopy indicated that the majority of antigen was localized at the particle surface with a smaller amount located in the interior. We also found that uptake of both fluoresceinated nanoparticles and microparticles by dendritic cells occurred in a manner dependent on particle concentration. Nanoparticles trafficked from the injection site to draining lymph nodes faster than microparticles; high numbers of nanoparticle-bearing cells appeared in draining lymph nodes on day 3 and microparticles on day 4. This difference in trafficking rate did not, however, appear to have any significant impact on the ensuing immune response because inoculation with both peptide-conjugated and protein-conjugated particles induced high levels of LHRH-specific antibodies. In the case of protein-conjugated particles, the levels of antibodies elicited were similar to those elicited following inoculation with antigen emulsified with complete Freunds adjuvant. The approach to vaccine design that we have described here could represent another useful method for inducing immune responses against microbial, viral and tumorigenic protein antigens.


Vaccine | 2008

A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection ☆

Brendon Y. Chua; Emily M. Eriksson; Lorena E. Brown; Weiguang Zeng; Eric J. Gowans; Joseph Torresi; David C. Jackson

Effective CD8(+) T cell responses have been induced using totally synthetic self-adjuvanting lipopeptides containing the dipalmitoyl-S-glyceryl cysteine lipid moiety, which is a ligand for Toll-like receptor 2 (TLR2) on dendritic cells (DC). In this study, we evaluated the use of lipopeptide vaccine candidates containing HLA-A2-restricted epitopes for DC-based immunotherapy of HCV infection. Lipopeptides were able to induce specific CD8(+) T cell responses in HLA-A2 transgenic mice and consistently activated human monocyte-derived DC from both healthy individuals and HCV infected patients. Lipopeptide-pulsed human DC were also found to secrete the pro-inflammatory cytokine IL-12p70 and were able to activate antigen-specific IFN-gamma production by autologous CD8(+) T cells obtained from a hepatitis C patient. These results show that DC from HCV patients can be matured and antigen loaded with TLR2-targeting lipopeptides for effective presentation of CD8(+) T cell epitopes; the use of autologous lipopeptide-pulsed DC or direct lipopeptide vaccination may be successful approaches for the priming or boosting of anti-HCV CD8(+) T cell responses to aid in the clearance of the virus in chronically infected individuals.


Journal of Immunology | 2011

Soluble Proteins Induce Strong CD8+ T Cell and Antibody Responses through Electrostatic Association with Simple Cationic or Anionic Lipopeptides That Target TLR2

Brendon Y. Chua; David Pejoski; Stephen J. Turner; Weiguang Zeng; David C. Jackson

The low immunogenicity exhibited by most soluble proteins is generally due to the absence of molecular signatures that are recognized by the immune system as dangerous. In this study, we show that electrostatic binding of synthetic branched cationic or anionic lipopeptides that contain the TLR-2 agonist Pam2Cys markedly enhance a protein’s immunogenicity. Binding of a charged lipopeptide to oppositely charged protein Ags resulted in the formation of stable complexes and occurs at physiologic pH and salt concentrations. The induction of cell-mediated responses is dependent on the electrostatic binding of lipopeptide to the protein, with no CD8+ T cells being elicited when protein and lipopeptide possessed the same electrical charge. The CD8+ T cells elicited after vaccination with lipopeptide–protein Ag complexes produced proinflammatory cytokines, exhibited in vivo lytic activity, and protected mice from challenge with an infectious chimeric influenza virus containing a single OVA epitope as part of the influenza neuraminidase protein. Induction of a CD8+ T cell response correlated with the ability of lipopeptide to facilitate Ag uptake by DCs followed by trafficking of Ag-bearing cells into draining lymph nodes. Oppositely charged but not similarly charged lipopeptides were more effective in DC uptake and trafficking. Very high protein-specific Ab titers were also achieved by vaccination with complexes composed of oppositely charged lipopeptide and protein, whereas vaccination with similarly charged constituents resulted in significant but lower Ab titers. Regardless of whether similarly or oppositely charged lipopeptides were used in the induction of Ab, vaccination generated dominant IgG1 isotype Abs rather than IgG2a.


Immunology and Cell Biology | 2003

Maturation of dendritic cells with lipopeptides that represent vaccine candidates for hepatitis C virus.

Brendon Y. Chua; Anne Healy; Paul U. Cameron; Michael Rizkalla; Weiguang Zeng; Joseph Torresi; Lorena E. Brown; Nina L Fowler; Eric J. Gowans; David C. Jackson

The ability of antigens to elicit immune responses depends upon their initial recognition, uptake, processing and presentation by dendritic cells. This fact has been recognized by many workers and dendritic cells are now regarded as natural ‘adjuvants’ in the business of vaccine design. One way of persuading dendritic cells to become interested in foreign material is to decorate it with lipid moieties found in bacteria. This approach has been used in the context of synthetic peptide‐based immunogens and depending on the nature of the epitopes included, can provide highly immunogenic structures capable of eliciting antibody or cytotoxic T cell responses. In this paper we describe the results of experiments in which the stimulatory effects of peptide‐based vaccine candidates on human dendritic cells are examined. Our findings indicate that lipidated structures comprising vaccine target sequences of viral origin coupled to the synthetic lipid groups of bacteria are able to induce the maturation of dendritic cells, as measured by the expression of cell surface MHC class II molecules.


Amino Acids | 2010

Structural requirement for the agonist activity of the TLR2 ligand Pam2Cys

Weiguang Zeng; Emily M. Eriksson; Brendon Y. Chua; Lara Grollo; David C. Jackson

Synthetic lipopeptides have demonstrated great potential as a vaccine strategy for eliciting cellular and humoral immunity. One of the most potent lipid moieties used is S-[2,3-bis(palmitoyloxy)propyl]cysteine (Pam2Cys). Pam2Cys binds to and activates dendritic cells by engagement of Toll like receptor 2 (TLR 2). In this study, we have investigated the structural requirement of the agonist activity of Pam2Cys by varying the three structural elements of the core structure S-(2,3-dihydroxypropyl)-cysteine namely (1) the α-amino group of the cysteine residue (2) the sulphur atom of the cysteine residue and (3) the 2,3-dihydroxypropyl moiety. Four novel analogues of Pam2Cys were made and each of these analogues were incorporated into vaccine constructs and examined for immunogenicity. Our results demonstrate that (1) the potency of the peptide vaccine is least affected by removal of the amino group (2) substitution of the sulphur atom with an amide bond leads to significant reduction of biological activity (3) removal of the amino group and at the same time substitution of the sulphur with an amide bond significantly decreases the biological activity (4) in the two analogues in which the sulphur atom is replaced with an amide bond the analogue containing the 1,3-dihydroxypropyl moiety demonstrates higher activity than the one which contains 2,3-dihydroxypropyl. In conclusion, the results demonstrate strict structural requirements for agonist activity of the TLR2 ligand Pam2Cys.


PLOS ONE | 2012

Hepatitis C VLPs delivered to dendritic cells by a TLR2 targeting lipopeptide results in enhanced antibody and cell-mediated responses.

Brendon Y. Chua; Douglas F. Johnson; Amabel C. L. Tan; Linda Earnest-Silveira; Toshiki Sekiya; Ruth Chin; Joseph Torresi; David C. Jackson

Although many studies provide strong evidence supporting the development of HCV virus-like particle (VLP)-based vaccines, the fact that heterologous viral vectors and/or multiple dosing regimes are required to induce protective immunity indicates that it is necessary to improve their immunogenicity. In this study, we have evaluated the use of an anionic self-adjuvanting lipopeptide containing the TLR2 agonist Pam2Cys (E8Pam2Cys) to enhance the immunogenicity of VLPs containing the HCV structural proteins (core, E1 and E2) of genotype 1a. While co-formulation of this lipopeptide with VLPs only resulted in marginal improvements in dendritic cell (DC) uptake, its ability to concomitantly induce DC maturation at very small doses is a feature not observed using VLPs alone or in the presence of an aluminium hydroxide-based adjuvant (Alum). Dramatically improved VLP and E2-specific antibody responses were observed in VLP+E8Pam2Cys vaccinated mice where up to 3 doses of non-adjuvanted or traditionally alum-adjuvanted VLPs was required to match the antibody titres obtained with a single dose of VLPs formulated with this lipopeptide. This result also correlated with significantly higher numbers of specific antibody secreting cells that was detected in the spleens of VLP+E8Pam2Cys vaccinated mice and greater ability of sera from these mice to neutralise the binding and uptake of VLPs by Huh7 cells. Moreover, vaccination of HLA-A2 transgenic mice with this formulation also induced better VLP-specific IFN-γ-mediated responses compared to non-adjuvanted VLPs but comparable levels to that achieved when coadministered with complete freund’s adjuvant. These results suggest overall that the immunogenicity of HCV VLPs can be significantly improved by the addition of this novel adjuvant by targeting their delivery to DCs and could therefore constitute a viable vaccine strategy for the treatment of HCV.


Journal of Biomedical Materials Research Part A | 2012

Control of size dispersity of chitosan biopolymer microparticles and nanoparticles to influence vaccine trafficking and cell uptake

Mohammad Al Kobiasi; Brendon Y. Chua; David Tonkin; David C. Jackson; David E. Mainwaring

Structurally related surfactant molecules were exploited to generate chitosan emulsions to provide systematic variation in micelle radii of curvature and size. These compositions provide precise control of chitosan particle dispersity, that is, size distribution according to three quantitative distribution parameters as well as shape distribution. This resulted in a suite of particle size distributions spanning 71 nm to 3.7 μm and a very high degree of particle sphericity, allowing the influence of particle size to be isolated in two in vivo studies relating biopolymer particle size to cellular uptake and trafficking to lymph nodes. Flow cytometry and fluorescence microscopy indicated that the three cell lines examined preferentially internalized chitosan microparticles to a greater extent than nanoparticles over a 24 h period. In an in vivo mouse model, nanoparticles initially trafficked rapidly to lymph nodes draining the site of inoculation followed by further slower uptake. Microparticles trafficked to the lymph nodes with a similar pattern except that the initial discharge was ∼50-fold less than that observed with nanoparticles indicating a profound difference in the physiological transport properties of the two particle types.


Immunology and Cell Biology | 2014

The use of a TLR2 agonist-based adjuvant for enhancing effector and memory CD8 T-cell responses

Brendon Y. Chua; Matthew R. Olson; Sammy Bedoui; Toshiki Sekiya; Chinn Yi Wong; Stephen J. Turner; David C. Jackson

We have previously shown that the immunogenicity of protein antigens can be significantly enhanced if electrostatically associated with the Toll‐like receptor‐2 agonist‐based lipopeptide R4Pam2Cys. The precise mechanisms and effectiveness of the cytotoxic T‐lymphocyte (CTL)‐mediated response facilitated by this agonist, however, have not been studied. Here we show that priming by dendritic cells (DCs) in the draining lymph nodes of animals vaccinated with antigen delivered using R4Pam2Cys results in significantly improved T‐cell proliferation and induces their differentiation into polyfunctional effector CTLs characterised by granzyme B expression and the ability to secrete interferon‐γ, interleukin‐2 and tumor necrosis factor‐α 7 days after vaccination. After 30 days, frequencies of antigen‐specific CD62lowCD127high (effector memory), CD62highCD127high (central memory) and CD43lowCD27high CD8+ T cells, a phenotype associated with strong recall responses against respiratory infections, are also increased compared with responses obtained with antigens formulated in the adjuvants Alum (alhydrogel) and CFA (complete Freunds adjuvant). The phenotypic changes observed in these mice vaccinated using R4Pam2Cys further correlated with their ability to recall specific T cells into the lung to mediate the reduction of pulmonary viral titres following challenge with a chimeric influenza virus containing the KbOVA257–264 epitope compared with animals vaccinated using Alum or CFA. The findings from this study not only demonstrate that better T‐cell responses can be elicited using R4Pam2Cys compared with classically utilised adjuvants but also highlight the potential effectiveness of this lipopeptide‐based adjuvant particularly against viral infections that require resolution through cell‐mediated immunity.


Methods of Molecular Biology | 2008

Synthesis of Toll-Like Receptor-2 Targeting Lipopeptides as Self-Adjuvanting Vaccines

Brendon Y. Chua; Weiguang Zeng; David C. Jackson

Effective Th1- and Th2-type immune responses that result in protective immunity against pathogens can be induced by self-adjuvanting lipopeptides containing the lipid moiety dipalmitoyl-S-glyceryl cysteine (Pam2Cys). The potent immunogenicity of these lipopeptides is due to their ability to activate dendritic cells by targeting and signaling through Toll-like receptor-2 (TLR-2). In addition, the simplicity and flexibility in their design as well as their ease of chemical definition and characterisation makes them highly attractive vaccine candidates for humans and animals. We describe in this chapter the techniques involved in the synthesis of an immunocontraceptive lipopeptide vaccine as well as the experimental assays carried out to evaluate its efficiency.


Mbio | 2015

Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity

Brendon Y. Chua; Chinn Yi Wong; Edin Jessica Mifsud; Kathryn M. Edenborough; Toshiki Sekiya; Amabel C. L. Tan; Francesca A. Mercuri; Steve Rockman; Weisan Chen; Stephen J. Turner; Peter C. Doherty; Anne Kelso; Lorena E. Brown; David C. Jackson

ABSTRACT The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8+ T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8+ T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. IMPORTANCE The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative.

Collaboration


Dive into the Brendon Y. Chua's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Mainwaring

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge