Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brent Henderson is active.

Publication


Featured researches published by Brent Henderson.


Marine Pollution Bulletin | 2012

River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon

Frederieke J. Kroon; Petra M. Kuhnert; Brent Henderson; Scott N. Wilkinson; Anne Kinsey-Henderson; Brett Abbott; Jon Brodie; Ryan D.R. Turner

Degradation of coastal ecosystems in the Great Barrier Reef (GBR) lagoon, Australia, has been linked with increased land-based runoff of suspended solids, nutrients and pesticides since European settlement. This study estimated the increase in river loads for all 35 GBR basins, using the best available estimates of pre-European and current loads derived from catchment modelling and monitoring. The mean-annual load to the GBR lagoon for (i) total suspended solids has increased by 5.5 times to 17,000ktonnes/year, (ii) total nitrogen by 5.7 times to 80,000tonnes/year, (iii) total phosphorus by 8.9 times to 16,000tonnes/year, and (iv) PSII herbicides is 30,000kg/year. The increases in river loads differ across the 10 pollutants and 35 basins examined, reflecting differences in surface runoff, urbanisation, deforestation, agricultural practices, mining and retention by reservoirs. These estimates will facilitate target setting for water quality and desired ecosystem states, and enable prioritisation of critical sources for management.


Soil Research | 2003

ASRIS: the database

R. M. Johnston; S. J. Barry; E. Bleys; Elisabeth N. Bui; Chris Moran; D.A.P. Simon; P. Carlile; Neil McKenzie; Brent Henderson; G. Chapman; M. Imhoff; D. Maschmedt; D. Howe; C. Grose; N.R. Schoknecht; B. Powell; Michael Grundy

The Australian Soil Resources Information System (ASRIS) database compiles the best publicly available information available across Commonwealth, State, and Territory agencies into a national database of soil profile data, digital soil and land resources maps, and climate, terrain, and lithology datasets. These datasets are described in detail in this paper. Most datasets are thematic grids that cover the intensively used agricultural zones in Australia.


Global Biogeochemical Cycles | 2009

Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia

Elisabeth N. Bui; Brent Henderson; Karin Viergever

[1] We present a piecewise linear decision tree model for predicting percent of soil organic C (SOC) in the agricultural zones of Australia generated using a machine learning approach. The inputs for the model are a national database of soil data, national digital surfaces of climate, elevation, and terrain variables, Landsat multispectral scanner data, lithology, land use, and soil maps. The model and resulting map are evaluated, and insights into biogeological surficial processes are discussed. The decision tree splits the overall data set into more homogenous subsets, thus in this case, it identifies areas where SOC responds closely to climatic and other environmental variables. The spatial pattern of SOC corresponds well to maps of estimated primary productivity and bioclimatic zones. Topsoil organic C levels are highest in the high rainfall, temperate regions of Tasmania, Victoria, and Western Australia, along the coast of New South Wales and in the wet tropics of Queensland; and lowest in arid and semiarid inland regions. While this pattern broadly follows continental vegetation, soil moisture, and temperature patterns, it is governed by a spatially variable hierarchy of different climatic and other variables across bioregions of Australia. At the continental scale, soil moisture level, rather than temperature, seems most important in controlling SOC.


Water Resources Research | 2012

Quantifying total suspended sediment export from the Burdekin River catchment using the loads regression estimator tool

Petra M. Kuhnert; Brent Henderson; Stephen Lewis; Zoe Bainbridge; Scott N. Wilkinson; Jon Brodie

The loads regression estimator (LRE) was introduced by Wang et al. (2011) as an improved approach for quantifying the export of loads and the corresponding uncertainty from river systems, where data are limited. We extend this methodology and show how LRE can be used to analyze a 24 year record of total suspended sediment concentrations for the Burdekin River. For large catchments with highly variable discharge such as that of the Burdekin River, it is important to quantify loads and their uncertainties accurately to determine the current load and to monitor the effect of changes in catchment management. The extended methodology incorporates (1) multiple discounted flow terms to represent the effect of flow history on concentration, (2) a term that captures sediment trapping and spatial sources of flow in terms of the ratio of flow from above the Burdekin Falls Dam, and (3) catchment vegetation cover. Furthermore, we validated model structure and performance in relation to the application tested. We also considered errors in gauged flow rates of 10% that were consistent with the literature. The results for the Burdekin site indicate substantial variability in loads across years. The inclusion of vegetation cover as a predictor had a significant impact on total suspended sediment (TSS) concentration, with values up to 2.1% lower noted per increasing percentage of vegetation cover. TSS concentration was up to 38% lower in years with greater proportions of flow from above the dam. The extended LRE methodology resulted in improved model performance. The results suggest that management of vegetation cover in dry years can reduce TSS loads from the Burdekin catchment, and this is the focus of future work.


Plant and Soil | 2013

C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors

Elisabeth N. Bui; Brent Henderson

AimsWe estimate organic carbon (C): total nitrogen (N): total phosphorus (P) ratios in soils under Australia’s major native vegetation groups.MethodsWe use digital datasets for climate, soils, and vegetation created for the National Land and Water Resources Audit in 2001. Analysis-of-variance is used to investigate differences in nutrient ratios between ecosystems. Linear discriminant analysis and logistic regression are used to investigate the relative importance of climatic variables and soil nutrients in vegetation patterns.ResultsWe find that the N:P and C:P ratios have a greater range of values than the C:N ratio, although major vegetation groups tend to show similar trends across all three ratios. Some apparently homeostatic groupings emerge: those with very low, low, medium, or high N:P and C:P. Tussock grasslands have very low soil N, N:P, and C:P, probably due to frequent burning. Eucalypt woodlands have low soil N:P and C:P ratios, although their total P level varies. Rainforests and Melaleuca forests have medium soil N:P and C:P ratios, although their total P level is different. Heathlands, tall open eucalypt forests, and shrublands occur on soils with low levels of total P, and high N:P and C:P ratios that reflect foliar nutrient ratios and recalcitrant litter.ConclusionsCertain plant communities have typical soil nutrient stoichiometries but there is no single Redfield-like ratio. Vegetation patterns largely reflect soil moisture but for several plant communities, eucalypt communities in particular, soil N and P (or N:P) also play a significant role. Soil N:P and the presence of Proteaceae appear indicative of nutrient constraints in ecosystems.


Water Resources Research | 2014

Fine‐suspended sediment and water budgets for a large, seasonally dry tropical catchment: Burdekin River catchment, Queensland, Australia

Zoe Bainbridge; Stephen Lewis; Scott G. Smithers; Petra M. Kuhnert; Brent Henderson; Jon Brodie

The Burdekin River catchment (~130,400 km2) is a seasonally dry tropical catchment located in north-east Queensland, Australia. It is the single largest source of suspended sediment to the Great Barrier Reef (GBR). Fine sediments are a threat to ecosystems on the GBR where they contribute to elevated turbidity (reduced light), sedimentation stress, and potential impacts from the associated nutrients. Suspended sediment data collected over a 5 year period were used to construct a catchment-wide sediment source and transport budget. The Bowen River tributary was identified as the major source of end-of-river suspended sediment export, yielding an average of 530 t km−2 yr−1 during the study period. Sediment trapping within a large reservoir (1.86 million ML) and the preferential transport of clays and fine silts downstream of the structure were also examined. The data reveal that the highest clay and fine silt loads—which are of most interest to environmental managers of the GBR—are not always sourced from areas that yield the largest total suspended sediment load (i.e., all size fractions). Our results demonstrate the importance of incorporating particle size into catchment sediment budget studies undertaken to inform management decisions to reduce downstream turbidity and sedimentation. Our data on sediment source, reservoir influence, and subcatchment and catchment yields will improve understandings of sediment dynamics in other tropical catchments, particularly those located in seasonally wet-dry tropical savannah/semiarid climates. The influence of climatic variability (e.g., drought/wetter periods) on annual sediment loads within large seasonally dry tropical catchments is also demonstrated by our data.


Marine Pollution Bulletin | 2012

Statistical power of detecting trends in total suspended sediment loads to the Great Barrier Reef

Ross Darnell; Brent Henderson; Frederieke J. Kroon; Petra M. Kuhnert

The export of pollutant loads from coastal catchments is of primary interest to natural resource management. For example, Reef Plan, a joint initiative by the Australian Government and the Queensland Government, has indicated that a 20% reduction in sediment is required by 2020. There is an obvious need to consider our ability to detect any trend if we are to set realistic targets or to reliably identify changes to catchment loads. We investigate the number of years of monitoring aquatic pollutant loads necessary to detect trends. Instead of modelling the trend in the annual loads directly, given their strong relationship to flow, we consider trends through the reduction in concentration for a given flow. Our simulations show very low power (<40%) of detecting changes of 20% over time periods of several decades, indicating that the chances of detecting trends of reasonable magnitudes over these time frames are very small.


Marine Environmental Research | 2015

Altered transcription levels of endocrine associated genes in two fisheries species collected from the Great Barrier Reef catchment and lagoon

Frederieke J. Kroon; Sharon E. Hook; Dean Jones; Suzanne Metcalfe; Brent Henderson; Rachael Smith; Michael Warne; Ryan D.R. Turner; Adam McKeown; David A. Westcott

The Great Barrier Reef (GBR) is chronically exposed to agricultural run-off containing pesticides, many of which are known endocrine disrupting chemicals (EDCs). Here, we measure mRNA transcript abundance of two EDC biomarkers in wild populations of barramundi (Lates calcarifer) and coral trout (Plectropomus leopardus and Plectropomus maculatus). Transcription levels of liver vitellogenin (vtg) differed significantly in both species amongst sites with different exposures to agricultural run-off; brain aromatase (cyp19a1b) revealed some differences for barramundi only. Exposure to run-off from sugarcane that contains pesticides is a likely pathway given (i) significant associations between barramundi vtg transcription levels, catchment sugarcane land use, and river pesticide concentrations, and (ii) consistency between patterns of coral trout vtg transcription levels and pesticide distribution in the GBR lagoon. Given the potential consequences of such exposure for reproductive fitness and population dynamics, these results are cause for concern for the sustainability of fisheries resources downstream from agricultural land uses.


Australian Journal of Botany | 2016

Phosphorus-utilisation efficiency and leaf-morphology traits of Rytidosperma species (wallaby grasses) that differ in their growth response to phosphorus fertilisation

Heidi A. Waddell; Richard J. Simpson; Hans Lambers; Brent Henderson; Megan H. Ryan; Denys L. Garden; Alan Richardson

Rytidosperma species are perennial grasses found in cool temperate grasslands of Australia. The species differ in their intrinsic growth rates, response to phosphorus (P) fertiliser application and critical external P requirements (P required for 90% maximum growth). The present study examined whether internal P-utilisation efficiency (PUE) by Rytidosperma species influenced these differences. The PUE of nine Rytidosperma species and two grasses of Mediterranean origin, Bromus hordeaceus L. and Lolium perenne L., was assessed using alternative measures of shoot P concentration or its reciprocal. No measure of PUE was correlated with the critical external P requirements of the species. One measure of PUE, shoot dry matter per unit P, when assessed at a common shoot P content was correlated with potential growth rate (P < 0.001; r = 0.93; 4 mg shoot P). However, other measures of PUE were not correlated with potential growth rates. All of the fast-growing species (B. hordeaceus, L. perenne, Rytidosperma duttonianum (Cashmore) Connor & Edgar and Rytidosperma richardsonii (Cashmore) Connor & Edgar) exhibited high PUE, whereas PUE varied substantially among the slower-growing species. The fast-growing Rytidosperma species differed in the contribution that area-based P concentration of leaves and specific leaf area (SLA) made to the achievement of high PUE, and they retained shoot-morphology traits normally associated with slow-growing species such as smaller leaf area, smaller SLA and higher leaf dry matter content.


Aquatic Ecology | 2018

The use of historical environmental monitoring data to test predictions on cross-scale ecological responses to alterations in river flows

Matthew J. Colloff; Ian Overton; Brent Henderson; Jane Roberts; Julian Reid; Roderick L. Oliver; Anthony D. Arthur; Tanya M. Doody; Neil Sims; Qifeng Ye; Susan M. Cuddy

Abstract Determination of ecological responses to river flows is fundamental to understanding how flow-dependent ecosystems have been altered by regulation, water diversions and climate change, and how to effect river restoration. Knowledge of ecohydrological relationships can support water management and policy, but this is not always the case. Management rules have tended to be developed ahead of scientific knowledge. The lag between practice and knowledge could be addressed by using historical monitoring data on ecological responses to changes in flows to determine significant empirical ecohydrological relationships, as an adjunct to investigating responses prospectively. This possibility was explored in the Murray–Darling Basin, Australia. We assessed 359 data sets collected during monitoring programs across the basin. Of these, only 32 (9%) were considered useful, based on a match between the scale at which sampling was done and ecological responses are likely to occur, and used to test flow–ecology predictions for phytoplankton, macroinvertebrates, fishes, waterbirds, floodplain trees, basin-scale vegetation and estuarine biota. We found relationships between flow and ecological responses were likely to be more strongly supported for large, long-lived, widespread biota (waterbirds, basin-scale vegetation, native fishes), than for more narrowly distributed (e.g. estuarine fishes) or smaller, short-lived organisms (e.g. phytoplankton, macroinvertebrates). This pattern is attributed to a mismatch between the design of monitoring programs and the response time frames of individual biota and processes, and to the use of local river discharge as a primary predictor variable when, for many biotic groups, other predictors need to be considered.

Collaboration


Dive into the Brent Henderson's collaboration.

Top Co-Authors

Avatar

Petra M. Kuhnert

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Elisabeth N. Bui

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederieke J. Kroon

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Scott N. Wilkinson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Chris Moran

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.A.P. Simon

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge