Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brent S. Davis is active.

Publication


Featured researches published by Brent S. Davis.


Journal of Virology | 2001

West Nile Virus Recombinant DNA Vaccine Protects Mouse and Horse from Virus Challenge and Expresses In Vitro a Noninfectious Recombinant Antigen That Can Be Used in Enzyme-Linked Immunosorbent Assays

Brent S. Davis; Gwong-Jen J. Chang; Bruce C. Cropp; John T. Roehrig; Denise A. Martin; Carl J. Mitchell; Richard A. Bowen; Michel L. Bunning

ABSTRACT Introduction of West Nile (WN) virus into the United States in 1999 created major human and animal health concerns. Currently, no human or veterinary vaccine is available to prevent WN viral infection, and mosquito control is the only practical strategy to combat the spread of disease. Starting with a previously designed eukaryotic expression vector, we constructed a recombinant plasmid (pCBWN) that expressed the WN virus prM and E proteins. A single intramuscular injection of pCBWN DNA induced protective immunity, preventing WN virus infection in mice and horses. Recombinant plasmid-transformed COS-1 cells expressed and secreted high levels of WN virus prM and E proteins into the culture medium. The medium was treated with polyethylene glycol to concentrate proteins. The resultant, containing high-titered recombinant WN virus antigen, proved to be an excellent alternative to the more traditional suckling-mouse brain WN virus antigen used in the immunoglobulin M (IgM) antibody-capture and indirect IgG enzyme-linked immunosorbent assays. This recombinant antigen has great potential to become the antigen of choice and will facilitate the standardization of reagents and implementation of WN virus surveillance in the United States and elsewhere.


Emerging Infectious Diseases | 2002

Experimental Infection of Horses with West Nile virus

Michel L. Bunning; Richard A. Bowen; C. Bruce Cropp; Kevin G. Sullivan; Brent S. Davis; Nicholas Komar; Marvin S. Godsey; Dale C. Baker; Danielle L. Hettler; Derek A. Holmes; Brad J. Biggerstaff; Carl J. Mitchell

A total of 12 horses of different breeds and ages were infected with West Nile virus (WNV) via the bites of infected Aedes albopictus mosquitoes. Half the horses were infected with a viral isolate from the brain of a horse (BC787), and half were infected with an isolate from crow brain (NY99-6625); both were NY99 isolates. Postinfection, uninfected female Ae. albopictus fed on eight of the infected horses. In the first trial, Nt antibody titers reached >1:320, 1:20, 1:160, and 1:80 for horses 1 to 4, respectively. In the second trial, the seven horses with subclinical infections developed Nt antibody titers >1:10 between days 7 and 11 post infection. The highest viremia level in horses fed upon by the recipient mosquitoes was approximately 460 Vero cell PFU/mL. All mosquitoes that fed upon viremic horses were negative for the virus. Horses infected with the NY99 strain of WNV develop low viremia levels of short duration; therefore, infected horses are unlikely to serve as important amplifying hosts for WNV in nature.


The Journal of Infectious Diseases | 2007

A West Nile Virus DNA Vaccine Induces Neutralizing Antibody in Healthy Adults during a Phase 1 Clinical Trial

Julie E. Martin; Theodore C. Pierson; Sarah Hubka; Steve Rucker; Ingelise J. Gordon; Mary E. Enama; Charla A. Andrews; Qing Xu; Brent S. Davis; Martha Nason; Michael P. Fay; Richard A. Koup; Mario Roederer; Robert T. Bailer; Phillip L. Gomez; John R. Mascola; Gwong-Jen J. Chang; Gary J. Nabel; Barney S. Graham

BACKGROUND West Nile virus (WNV) is a mosquito-borne flavivirus that can cause severe meningitis and encephalitis in infected individuals. We report the safety and immunogenicity of a WNV DNA vaccine in its first phase 1 human study. METHODS A single-plasmid DNA vaccine encoding the premembrane and the envelope glycoproteins of the NY99 strain of WNV was evaluated in an open-label study in 15 healthy adults. Twelve subjects completed the 3-dose vaccination schedule, and all subjects completed 32 weeks of evaluation for safety and immunogenicity. The development of a vaccine-induced immune response was assessed by enzyme-linked immunosorbant assay, neutralization assays, intracelluar cytokine staining, and enzyme-linked immunospot assay. RESULTS The vaccine was safe and well tolerated, with no significant adverse events. Vaccine-induced T cell and antibody responses were detected in the majority of subjects. Neutralizing antibody to WNV was detected in all subjects who completed the 3-dose vaccination schedule, at levels shown to be protective in studies of horses, an incidental natural host for WNV. CONCLUSIONS Further assessment of this DNA platform for human immunization against WNV is warranted. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00106769 .


Journal of Virology | 2000

A Single Intramuscular Injection of Recombinant Plasmid DNA Induces Protective Immunity and Prevents Japanese Encephalitis in Mice

Gwong-Jen J. Chang; Ann R. Hunt; Brent S. Davis

ABSTRACT Plasmid vectors containing Japanese encephalitis virus (JEV) premembrane (prM) and envelope (E) genes were constructed that expressed prM and E proteins under the control of a cytomegalovirus immediate-early gene promoter. COS-1 cells transformed with this plasmid vector (JE-4B clone) secreted JEV-specific extracellular particles (EPs) into the culture media. Groups of outbred ICR mice were given one or two doses of recombinant plasmid DNA or two doses of the commercial vaccine JEVAX. All mice that received one or two doses of DNA vaccine maintained JEV-specific antibodies 18 months after initial immunization. JEVAX induced 100% seroconversion in 3-week-old mice; however, none of the 3-day-old mice had enzyme-linked immunosorbent assay titers higher than 1:400. Female mice immunized with this DNA vaccine developed plaque reduction neutralization antibody titers of between 1:20 and 1:160 and provided 45 to 100% passive protection to their progeny following intraperitoneal challenge with 5,000 PFU of virulent JEV strain SA14. Seven-week-old adult mice that had received a single dose of JEV DNA vaccine when 3 days of age were completely protected from a 50,000-PFU JEV intraperitoneal challenge. These results demonstrate that a recombinant plasmid DNA which produced JEV EPs in vitro is an effective vaccine.


Emerging Infectious Diseases | 2004

Experimental Infection of Cats and Dogs with West Nile Virus

Laura Austgen; Richard A. Bowen; Michel L. Bunning; Brent S. Davis; Carl J. Mitchell; Gwong-Jen J. Chang

Domestic dogs and cats were infected by mosquito bite and evaluated as hosts for West Nile virus (WNV). Viremia of low magnitude and short duration developed in four dogs but they did not display signs of disease. Four cats became viremic, with peak titers ranging from 103.0 to 104.0 PFU/mL. Three of the cats showed mild, non-neurologic signs of disease. WNV was not isolated from saliva of either dogs or cats during the period of viremia. An additional group of four cats were exposed to WNV orally, through ingestion of infected mice. Two cats consumed an infected mouse on three consecutive days, and two cats ate a single infected mouse. Viremia developed in all of these cats with a magnitude and duration similar to that seen in cats infected by mosquito bite, but none of the four showed clinical signs. These results suggest that dogs and cats are readily infected by WNV. The high efficiency of oral transmission observed with cats suggests that infected prey animals may serve as an important source of infection to carnivores. Neither species is likely to function as an epidemiologically important amplifying host, although the peak viremia observed in cats may be high enough to infect mosquitoes at low efficiency.


Journal of Clinical Microbiology | 2007

Development of Multiplex Real-Time Reverse Transcriptase PCR Assays for Detecting Eight Medically Important Flaviviruses in Mosquitoes

Day-Yu Chao; Brent S. Davis; Gwong-Jen J. Chang

ABSTRACT A multiplex real-time reverse transcriptase PCR has been developed for the rapid detection and identification of eight medically important flaviviruses from laboratory-reared, virus-infected mosquito pools. The method used involves the gene-specific amplification of yellow fever virus (YFV), Japanese encephalitis virus (JEV), West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and dengue virus (DENV) serotypes 1 to 4 (DENV-1 to DENV-4, respectively) by use of the flavivirus consensus amplimers located at the RNA-dependent RNA polymerase domain of nonstructural protein 5. Virus-specific amplicons were detected by four newly characterized TaqMan fluorogenic probes (probes specific for YFV, JEV, WNV, and SLEV) and four previously published probes specific for DENV-1 to -4 (L. J. Chien, T. L. Liao, P. Y. Shu, J. H. Huang, D. J. Gubler, and G. J. Chang, J. Clin. Microbiol. 44:1295-1304, 2006). This assay had a specificity of 100% and various sensitivities of at least 3.5 PFU/ml for YFV, 2.0 PFU/ml for JEV, 10.0 PFU/ml for WNV, and 10.0 PFU/ml for SLEV. Additionally, we have developed an in vitro transcription system to generate RNase-resistant RNA templates for each of these eight viruses. These templates can be incorporated into the assay as RNA copy number controls and/or as external controls for RNA-spiked mosquito pools for quality assurance purposes. Although further study with mosquitoes collected in the field is needed, the incorporation of this assay into mosquito surveillance could be used as an early-warning system for the detection of medically important flaviviruses, particularly when the cocirculation of multiple viruses in the same region is suspected.


Cell Reports | 2017

Frequent Zika Virus Sexual Transmission and Prolonged Viral RNA Shedding in an Immunodeficient Mouse Model

Nisha K. Duggal; Jana M. Ritter; Samuel E. Pestorius; Sherif R. Zaki; Brent S. Davis; Gwong-Jen J. Chang; Richard A. Bowen; Aaron C. Brault

SUMMARY Circulation of Zika virus (ZIKV) was first identified in the Western hemisphere in late 2014. Primarily transmitted through mosquito bite, ZIKV can also be transmitted through sex and from mother to fetus, and maternal ZIKV infection has been associated with fetal malformations. We assessed immunodeficient AG129 mice for their capacity to shed ZIKV in semen and to infect female mice via sexual transmission. Infectious virus was detected in semen between 7 and 21 days post-inoculation, and ZIKV RNA was detected in semen through 58 days post-inoculation. During mating, 73% of infected males transmitted ZIKV to uninfected females, and 50% of females became infected, with evidence of fetal infection in resulting pregnancies. Semen from vasectomized mice contained significantly lower levels of infectious virus, though sexual transmission still occurred. This model provides a platform for studying the kinetics of ZIKV sexual transmission and prolonged RNA shedding also observed in human semen.


Expert Review of Vaccines | 2004

Recent advancement in flavivirus vaccine development.

Gwong-Jen J. Chang; Goro Kuno; David E. Purdy; Brent S. Davis

Lately, the magnitude of cumulative diseases burden caused by flaviviruses, such as dengue virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus and yellow fever virus, has reached an unprecedented level with the sizes of human and animal populations at risk increasing sharply. These diseases present highly complex medical, economic and ecologic problems, some effecting primarily human and others affecting human, livestock and wildlife. The large body of recent publications on the development of vaccines taking advantage of new generations of bio-engineering techniques clearly reflects the profound interests and deep sense of urgency in the scientific and medical communities in combating those diseases. This review reveals a collection of remarkable progresses thus far made in flaviviral vaccine research not only employing a diverse range of new strategies but also re-tooling old techniques to improve the existing vaccines. The efficacy and safety of some of the new vaccine candidates have been evaluated and proven in human clinical trials. Besides the technical advancement in vaccine development, in this review, the importance of somewhat neglected and yet critical subjects, such as adequacy of animal model, vaccine safety, vaccine formulation and delivery, complication in serodiagostics and economic factor, was examined in-depth.


Journal of Medical Entomology | 2003

Habitat Preferences and Phenology of Ochlerotatus triseriatus and Aedes albopictus (Diptera: Culicidae) in Southwestern Virginia

Christopher M. Barker; Sally L. Paulson; Sue Cantrell; Brent S. Davis

Abstract Recently, the number of reported human cases of La Crosse encephalitis, an illness caused by mosquito-borne La Crosse virus (LAC), has increased in southwestern Virginia, resulting in a need for better understanding of the virus cycle and the biology of its vectors in the region. This study examined the spatial and temporal distributions of the primary vector of LAC, Ochlerotatus triseriatus (Say), and a potential secondary vector, Aedes albopictus (Skuse). Ovitrapping surveys were conducted in 1998 and 1999 to determine distributions and oviposition habitat preferences of the two species in southwestern Virginia. Mosquitoes also were collected for virus assay from a tire dump and a human La Crosse encephalitis case site between 1998 and 2000. Oc. triseriatus and Ae. albopictus were collected from all ovitrap sites surveyed, and numbers of Oc. triseriatus eggs generally were higher than those of Ae. albopictus. Numbers of Oc. triseriatus remained high during most of the summer, while Ae. albopictus numbers increased gradually, reaching a peak in late August and declining thereafter. In Wise County, relative Ae. albopictus abundance was highest in sites with traps placed in open residential areas. Lowest numbers of both species were found in densely forested areas. Ovitrapping during consecutive years revealed that Ae. albopictus was well established and overwintering in the area. An oviposition comparison between the yard and adjacent forest at a human La Crosse encephalitis case site in 1999 showed that Ae. albopictus preferentially oviposited in the yard surrounding the home, but Oc. triseriatus showed no preference. LAC isolations from larval and adult collections of Oc. triseriatus females from the same case site indicated the occurrence of transovarial transmission.


Journal of Virology | 2004

Contribution of Disulfide Bridging to Epitope Expression of the Dengue Type 2 Virus Envelope Glycoprotein

John T. Roehrig; Katharine E. Volpe; Jennifer Squires; Ann R. Hunt; Brent S. Davis; Gwong-Jen J. Chang

ABSTRACT The individual contributions of each of the six conserved disulfide (SS) bonds in the dengue 2 virus envelope (E) glycoprotein (strain 16681) to epitope expression was determined by measuring the reactivities of a panel of well-defined monoclonal antibodies (MAbs) with LLC-MK2 cells that had been transiently transformed with plasmid vectors expressing E proteins that were mutant in their SS bonds. Three domain I (DI) epitopes (C1, C3, and C4) were affected by elimination of any SS bond and were essentially the only epitopes affected by elimination of the amino-proximal SS1 formed between Cys 3 and Cys 30. The remaining DI epitope (C2) was sensitive to only SS3-bond (Cys 74-Cys 105) and SS6-bond (Cys 302-Cys 333) elimination. Of the four DII epitopes examined, reactivities of three anti-epitope MAbs (A1, A2, and A5) were reduced by elimination of SS2 (Cys 61-Cys 121), SS3, SS4 (Cys 94-Cys 116), SS5 (Cys 185-Cys 285), or SS6. The other DII epitope examined (A3) was sensitive only to SS2- and SS3-bond elimination. The three DIII epitopes tested (B2, B3, and B4) were most sensitive to elimination of SS6. The flavivirus group epitope (A1) was less sensitive to elimination of SS3 and SS6. This result may indicate that the region proximal to the E-protein fusion motif (amino acids 98 to 110) may have important linear components. If this observation can be confirmed, peptide mimics from this region of E protein might be able to interfere with flavivirus replication.

Collaboration


Dive into the Brent S. Davis's collaboration.

Top Co-Authors

Avatar

Gwong-Jen J. Chang

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Carl J. Mitchell

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Michel L. Bunning

United States Air Force Academy

View shared research outputs
Top Co-Authors

Avatar

Nicholas Komar

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Day-Yu Chao

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Wayne D. Crill

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Holly R. Hughes

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

John T. Roehrig

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Marvin S. Godsey

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge