Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brenton W. McMenamin is active.

Publication


Featured researches published by Brenton W. McMenamin.


Psychological Science | 2009

Right Dorsolateral Prefrontal Cortical Activity and Behavioral Inhibition

Alexander J. Shackman; Brenton W. McMenamin; Jeffrey S. Maxwell; Lawrence L. Greischar; Richard J. Davidson

Individuals show marked variation in their responses to threat. Such individual differences in behavioral inhibition play a profound role in mental and physical well-being. Behavioral inhibition is thought to reflect variation in the sensitivity of a distributed neural system responsible for generating anxiety and organizing defensive responses to threat and punishment. Although progress has been made in identifying the key constituents of this behavioral inhibition system in humans, the involvement of dorsolateral prefrontal cortex (DLPFC) remains unclear. Here, we acquired self-reported Behavioral Inhibition System Sensitivity scores and high-resolution electroencephalography from a large sample (n = 51). Using the enhanced spatial resolution afforded by source modeling techniques, we show that individuals with greater tonic (resting) activity in right-posterior DLPFC rate themselves as more behaviorally inhibited. This observation provides novel support for recent conceptualizations of behavioral inhibition and clues to the mechanisms that might underlie variation in threat-induced negative affect.


The Journal of Neuroscience | 2011

Stress potentiates early and attenuates late stages of visual processing.

Alexander J. Shackman; Jeffrey S. Maxwell; Brenton W. McMenamin; Lawrence L. Greischar; Richard J. Davidson

Stress can fundamentally alter neural responses to incoming information. Recent research suggests that stress and anxiety shift the balance of attention away from a task-directed mode, governed by prefrontal cortex, to a sensory-vigilance mode, governed by the amygdala and other threat-sensitive regions. A key untested prediction of this framework is that stress exerts dissociable effects on different stages of information processing. This study exploited the temporal resolution afforded by event-related potentials to disentangle the impact of stress on vigilance, indexed by early perceptual activity, from its impact on task-directed cognition, indexed by later postperceptual activity in humans. Results indicated that threat of shock amplified stress, measured using retrospective ratings and concurrent facial electromyography. Stress also double-dissociated early sensory-specific processing from later task-directed processing of emotionally neutral stimuli: stress amplified N1 (184–236 ms) and attenuated P3 (316–488 ms) activity. This demonstrates that stress can have strikingly different consequences at different processing stages. Consistent with recent suggestions, stress amplified earlier extrastriate activity in a manner consistent with vigilance for threat (N1), but disrupted later activity associated with the evaluation of task-relevant information (P3). These results provide a novel basis for understanding how stress can modulate information processing in everyday life and stress-sensitive disorders.


Brain Topography | 2009

Electromyogenic artifacts and electroencephalographic inferences.

Alexander J. Shackman; Brenton W. McMenamin; Heleen A. Slagter; Jeffrey S. Maxwell; Lawrence L. Greischar; Richard J. Davidson

Muscle or electromyogenic (EMG) artifact poses a serious risk to inferential validity for any electroencephalography (EEG) investigation in the frequency-domain owing to its high amplitude, broad spectrum, and sensitivity to psychological processes of interest. Even weak EMG is detectable across the scalp in frequencies as low as the alpha band. Given these hazards, there is substantial interest in developing EMG correction tools. Unfortunately, most published techniques are subjected to only modest validation attempts, rendering their utility questionable. We review recent work by our laboratory quantitatively investigating the validity of two popular EMG correction techniques, one using the general linear model (GLM), the other using temporal independent component analysis (ICA). We show that intra-individual GLM-based methods represent a sensitive and specific tool for correcting on-going or induced, but not evoked (phase-locked) or source-localized, spectral changes. Preliminary work with ICA shows that it may not represent a panacea for EMG contamination, although further scrutiny is strongly warranted. We conclude by describing emerging methodological trends in this area that are likely to have substantial benefits for basic and applied EEG research.


NeuroImage | 2011

Electromyogenic Artifacts and Electroencephalographic Inferences Revisited.

Brenton W. McMenamin; Alexander J. Shackman; Lawrence L. Greischar; Richard J. Davidson

Recent years have witnessed a renewed interest in using oscillatory brain electrical activity to understand the neural bases of cognition and emotion. Electrical signals originating from pericranial muscles represent a profound threat to the validity of such research. Recently, McMenamin et al (2010) examined whether independent component analysis (ICA) provides a sensitive and specific means of correcting electromyogenic (EMG) artifacts. This report sparked the accompanying commentary (Olbrich, Jödicke, Sander, Himmerich & Hegerl, in press), and here we revisit the question of how EMG can alter inferences drawn from the EEG and what can be done to minimize its pernicious effects. Accordingly, we briefly summarize salient features of the EMG problem and review recent research investigating the utility of ICA for correcting EMG and other artifacts. We then directly address the key concerns articulated by Olbrich and provide a critique of their efforts at validating ICA. We conclude by identifying key areas for future methodological work and offer some practical recommendations for intelligently addressing EMG artifact.


The Journal of Neuroscience | 2014

Network Organization Unfolds over Time during Periods of Anxious Anticipation

Brenton W. McMenamin; Sandra J. E. Langeslag; Mihai Sirbu; Srikanth Padmala; Luiz Pessoa

Entering a state of anxious anticipation triggers widespread changes across large-scale networks in the brain. The temporal aspects of this transition into an anxious state are poorly understood. To address this question, an instructed threat of shock paradigm was used while recording functional MRI in humans to measure how activation and functional connectivity change over time across the salience, executive, and task-negative networks and how they interact with key regions implicated in emotional processing; the amygdala and bed nucleus of the stria terminalis (BNST). Transitions into threat blocks were associated with transient responses in regions of the salience network and sustained responses in a putative BNST site, among others. Multivariate network measures of communication were computed, revealing changes to network organization during transient and sustained periods of threat, too. For example, the salience network exhibited a transient increase in network efficiency followed by a period of sustained decreased efficiency. The amygdala became more central to network function (as assessed via betweenness centrality) during threat across all participants, and the extent to which the BNST became more central during threat depended on self-reported anxiety. Together, our study unraveled a progression of responses and network-level changes due to sustained threat. In particular, our results reveal how network organization unfolds with time during periods of anxious anticipation.


Psychophysiology | 2009

Validation of regression-based myogenic correction techniques for scalp and source-localized EEG.

Brenton W. McMenamin; Alexander J. Shackman; Jeffrey S. Maxwell; Lawrence L. Greischar; Richard J. Davidson

EEG and EEG source-estimation are susceptible to electromyographic artifacts (EMG) generated by the cranial muscles. EMG can mask genuine effects or masquerade as a legitimate effect-even in low frequencies, such as alpha (8-13 Hz). Although regression-based correction has been used previously, only cursory attempts at validation exist, and the utility for source-localized data is unknown. To address this, EEG was recorded from 17 participants while neurogenic and myogenic activity were factorially varied. We assessed the sensitivity and specificity of four regression-based techniques: between-subjects, between-subjects using difference-scores, within-subjects condition-wise, and within-subject epoch-wise on the scalp and in data modeled using the LORETA algorithm. Although within-subject epoch-wise showed superior performance on the scalp, no technique succeeded in the source-space. Aside from validating the novel epoch-wise methods on the scalp, we highlight methods requiring further development.


Cognitive, Affective, & Behavioral Neuroscience | 2013

Can theories of visual representation help to explain asymmetries in amygdala function

Brenton W. McMenamin; Chad J. Marsolek

Emotional processing differs between the left and right hemispheres of the brain, and functional differences have been reported more specifically between the left and right amygdalae, subcortical structures heavily implicated in emotional processing. However, the empirical pattern of amygdalar asymmetries is inconsistent with extant theories of emotional asymmetries. Here we review this discrepancy, and we hypothesize that hemispheric differences in visual object processing help to explain the previously reported functional differences between the left and right amygdalae. The implication that perceptual factors play a large role in determining amygdalar asymmetries may help to explain amygdalar dysfunction in the development and maintenance of posttraumatic stress disorder.


The Neuroscientist | 2017

Dynamic Networks in the Emotional Brain.

Luiz Pessoa; Brenton W. McMenamin

Research on the emotional brain has often focused on a few structures thought to be central to this type of processing—hypothalamus, amygdala, insula, and so on. Conceptual thinking about emotion has viewed this mental faculty as linked to broader brain circuits, too, including early ideas by Papez and others. In this article, we discuss research that embraces a distributed view of emotion circuits and efforts to unravel the impact on emotional manipulations on the processing of several large-scale brain networks that are chiefly important for mental operations traditionally labeled with terms such as “perception,” “action,” and “cognition.” Furthermore, we describe networks as dynamic processes and how emotion-laden stimuli strongly affect network structure. As networks are not static entities, their organization unfolds temporally, such that specific brain regions affiliate with them in a time-varying fashion. Thus, at a specific moment, brain regions participate more strongly in some networks than others. In this dynamic view of brain function, emotion has broad, distributed effects on processing in a manner that transcends traditional boundaries and inflexible labels, such as “emotion” and “cognition.” What matters is the coordinated action that supports behaviors.


Brain and Cognition | 2015

Separability of Abstract-Category and Specific-Exemplar Visual Object Subsystems: Evidence from fMRI Pattern Analysis

Brenton W. McMenamin; Rebecca G. Deason; Vaughn R. Steele; Wilma Koutstaal; Chad J. Marsolek

Previous research indicates that dissociable neural subsystems underlie abstract-category (AC) recognition and priming of objects (e.g., cat, piano) and specific-exemplar (SE) recognition and priming of objects (e.g., a calico cat, a different calico cat, a grand piano, etc.). However, the degree of separability between these subsystems is not known, despite the importance of this issue for assessing relevant theories. Visual object representations are widely distributed in visual cortex, thus a multivariate pattern analysis (MVPA) approach to analyzing functional magnetic resonance imaging (fMRI) data may be critical for assessing the separability of different kinds of visual object processing. Here we examined the neural representations of visual object categories and visual object exemplars using multi-voxel pattern analyses of brain activity elicited in visual object processing areas during a repetition-priming task. In the encoding phase, participants viewed visual objects and the printed names of other objects. In the subsequent test phase, participants identified objects that were either same-exemplar primed, different-exemplar primed, word-primed, or unprimed. In visual object processing areas, classifiers were trained to distinguish same-exemplar primed objects from word-primed objects. Then, the abilities of these classifiers to discriminate different-exemplar primed objects and word-primed objects (reflecting AC priming) and to discriminate same-exemplar primed objects and different-exemplar primed objects (reflecting SE priming) was assessed. Results indicated that (a) repetition priming in occipital-temporal regions is organized asymmetrically, such that AC priming is more prevalent in the left hemisphere and SE priming is more prevalent in the right hemisphere, and (b) AC and SE subsystems are weakly modular, not strongly modular or unified.


Cognitive, Affective, & Behavioral Neuroscience | 2016

Conflicting demands of abstract and specific visual object processing resolved by frontoparietal networks

Brenton W. McMenamin; Chad J. Marsolek; Morseth Bk; Speer Mf; Philip C. Burton; Burgund Ed

Object categorization and exemplar identification place conflicting demands on the visual system, yet humans easily perform these fundamentally contradictory tasks. Previous studies suggest the existence of dissociable visual processing subsystems to accomplish the two abilities—an abstract category (AC) subsystem that operates effectively in the left hemisphere and a specific exemplar (SE) subsystem that operates effectively in the right hemisphere. This multiple subsystems theory explains a range of visual abilities, but previous studies have not explored what mechanisms exist for coordinating the function of multiple subsystems and/or resolving the conflicts that would arise between them. We collected functional MRI data while participants performed two variants of a cue–probe working memory task that required AC or SE processing. During the maintenance phase of the task, the bilateral intraparietal sulcus (IPS) exhibited hemispheric asymmetries in functional connectivity consistent with exerting proactive control over the two visual subsystems: greater connectivity to the left hemisphere during the AC task, and greater connectivity to the right hemisphere during the SE task. Moreover, probe-evoked activation revealed activity in a broad frontoparietal network (containing IPS) associated with reactive control when the two visual subsystems were in conflict, and variations in this conflict signal across trials was related to the visual similarity of the cue–probe stimulus pairs. Although many studies have confirmed the existence of multiple visual processing subsystems, this study is the first to identify the mechanisms responsible for coordinating their operations.

Collaboration


Dive into the Brenton W. McMenamin's collaboration.

Top Co-Authors

Avatar

Lawrence L. Greischar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Richard J. Davidson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Maxwell

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Koppenhaver

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. W. Bachhuber

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Trask

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge