Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bret C. Mobley is active.

Publication


Featured researches published by Bret C. Mobley.


The New England Journal of Medicine | 2011

NFKBIA Deletion in Glioblastomas

Markus Bredel; Denise M. Scholtens; Ajay K. Yadav; Angel A. Alvarez; Jaclyn J. Renfrow; James P. Chandler; Irene L.Y. Yu; Maria Stella Carro; Fangping Dai; Michael Tagge; Roberto Ferrarese; Claudia Bredel; Heidi S. Phillips; Paul J. Lukac; Pierre Robe; Astrid Weyerbrock; Hannes Vogel; Steven Dubner; Bret C. Mobley; Xiaolin He; Adrienne C. Scheck; Branimir I. Sikic; Kenneth D. Aldape; Arnab Chakravarti; Griffith R. Harsh

BACKGROUND Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O(6)-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival.


Cell | 2000

The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel

Daniel L. Minor; Yu Fung Lin; Bret C. Mobley; Abigail Avelar; Yuh Nung Jan; Lily Yeh Jan; James M. Berger

Kv voltage-gated potassium channels share a cytoplasmic assembly domain, T1. Recent mutagenesis of two T1 C-terminal loop residues implicates T1 in channel gating. However, structural alterations of these mutants leave open the question concerning direct involvement of T1 in gating. We find in mammalian Kv1.2 that gating depends critically on residues at complementary T1 surfaces in an unusually polar interface. An isosteric mutation in this interface causes surprisingly little structural alteration while stabilizing the closed channel and increasing the stability of T1 tetramers. Replacing T1 with a tetrameric coiled-coil destabilizes the closed channel. Together, these data suggest that structural changes involving the buried polar T1 surfaces play a key role in the conformational changes leading to channel opening.


Acta Neuropathologica | 2010

Loss of SMARCB1/INI1 expression in poorly differentiated chordomas

Bret C. Mobley; Jesse K. McKenney; Charles D. Bangs; Katherine Callahan; Kristen W. Yeom; Reinhard Schneppenheim; Melanie G. Hayden; Athena M. Cherry; Murat Gokden; Michael S. B. Edwards; Paul G. Fisher; Hannes Vogel

Chordomas are malignant neoplasms that typically arise in the axial spine and primarily affect adults. When chordomas arise in pediatric patients they are more likely to display unusual histological features and aggressive behavior. We noted the absence of SMARCB1/INI1 expression by immunohistochemistry in an index case of poorly differentiated chordoma of the sacrum, leading us to further examine SMARCB1/INI1 expression as well as that of brachyury, a highly specific marker of notochordal differentiation, in 3 additional poorly differentiated chordomas of the clivus, 10 typical chordomas, and 8 atypical teratoid/rhabdoid tumors (AT/RTs). All 4 poorly differentiated chordomas and all AT/RTs lacked nuclear expression of SMARCB1/INI1, while the 10 typical chordomas maintained strong nuclear SMARCB1/INI1 immunoreactivity. All 10 typical and 4 poorly differentiated chordomas expressed brachyury; all 8 AT/RTs were brachyury immunonegative. Cytogenetic evaluation utilizing FISH probes near the SMARCB1/INI1 locus on chromosome 22q was also performed in all of the poorly differentiated chordomas in this series. Three of the four poorly differentiated chordomas had evidence for deletion of this region by FISH. Analysis of the SMARCB1/INI1 gene sequence was performed using formalin-fixed paraffin-embedded tissue in all cases and no point mutations were observed. In summary, all poorly differentiated chordomas in this series showed the absence of SMARCB1/INI1 expression, and were reliably distinguished from AT/RTs, clinically by their characteristic primary sites of origin and pathologically by strong nuclear brachyury expression. Our findings reveal a likely role for SMARCB1/INI1 in a subset of chordomas with aggressive features.


The New England Journal of Medicine | 2012

The Index Case for the Fungal Meningitis Outbreak in the United States

April C. Pettit; Jonathan A. Kropski; Jessica L. Castilho; Jonathan E. Schmitz; Carol A. Rauch; Bret C. Mobley; Xuan J. Wang; Steven S. Spires; Meredith E. Pugh

Persistent neutrophilic meningitis presents a diagnostic challenge, because the differential diagnosis is broad and includes atypical infectious causes. We describe a case of persistent neutrophilic meningitis due to Aspergillus fumigatus in an immunocompetent man who had no evidence of sinopulmonary or cutaneous disease. An epidural glucocorticoid injection was identified as a potential route of entry for this organism into the central nervous system, and the case was reported to the state health department.


American Journal of Neuroradiology | 2013

Diffusion-Weighted MRI: Distinction of Skull Base Chordoma from Chondrosarcoma

Kristen W. Yeom; Robert M. Lober; Bret C. Mobley; Griffith R. Harsh; Hannes Vogel; R. Allagio; M. Pearson; Michael S. B. Edwards; Nancy J. Fischbein

BACKGROUND AND PURPOSE: Chordoma and chondrosarcoma of the skull base are rare tumors with overlapping presentations and anatomic imaging features but different prognoses. We hypothesized that these tumors might be distinguished by using diffusion-weighted MR imaging. MATERIALS AND METHODS: We retrospectively reviewed 19 patients with pathologically confirmed chordoma or chondrosarcoma who underwent both conventional and diffusion-weighted MR imaging. Differences in distributions of ADC were assessed by the Kruskal-Wallis test. Associations between histopathologic diagnosis and conventional MR imaging features (T2 signal intensity, contrast enhancement, and tumor location) were assessed with the Fisher exact test. RESULTS: Chondrosarcoma was associated with the highest mean ADC value (2051 ± 261 × 10−6 mm2/s) and was significantly different from classic chordoma (1474 ± 117 × 10−6 mm2/s) and poorly differentiated chordoma (875 ± 100 × 10−6 mm2/s) (P < .001). Poorly differentiated chordoma was characterized by low T2 signal intensity (P = .001), but other conventional MR imaging features of enhancement and/or lesion location did not reliably distinguish these tumor types. CONCLUSIONS: Diffusion-weighted MR imaging may be useful in assessing clival tumors, particularly in differentiating chordoma from chondrosarcoma. A prospective study of a larger cohort will be required to determine the value of ADC in predicting histopathologic diagnosis.


American Journal of Roentgenology | 2013

Distinctive MRI Features of Pediatric Medulloblastoma Subtypes

Kristen W. Yeom; Bret C. Mobley; Robert M. Lober; Jalal B. Andre; Sonia Partap; Hannes Vogel; Patrick D. Barnes

OBJECTIVE We hypothesized that the apparent diffusion coefficient (ADC) and other MRI features can be used to predict medulloblastoma histologic subtypes, as defined by the World Health Organization (WHO) in WHO Classification of Tumours of the Central Nervous System. MATERIALS AND METHODS A retrospective review of pediatric patients with medulloblastoma between 1989 and 2011 identified 38 patients with both pretreatment MRI and original pathology slides. The mean and minimum tumor ADC values and conventional MRI features were compared among medulloblastoma histologic subtypes. RESULTS The cohort of 38 patients included the following histologic subtypes: 24 classic medulloblastomas, nine large cell (LC) or anaplastic medulloblastomas, four desmoplastic medulloblastomas, and one medulloblastoma with extensive nodularity. The median age at diagnosis was 8 years (range, 1-21 years) and the median follow-up time was 33 months (range, 0-150 months). The mean ADC (× 10(-3) mm(2)/s) was lower in classic medulloblastoma (0.733 ± 0.046 [SD]) than in LC or anaplastic medulloblastoma (0.935 ± 0.127) (Mann-Whitney test, p = 0.004). Similarly, the minimum ADC was lower in classic medulloblastoma (average ± SD, 0.464 ± 0.056) than in LC or anaplastic medulloblastoma (0.630 ± 0.053) (p = 0.004). The MRI finding of focal cysts correlated with the classic and desmoplastic subtypes (Fisher exact test, p = 0.026). Leptomeningeal enhancement positively correlated with the LC or anaplastic medulloblastoma subtype and inversely correlated with the classic medulloblastoma and desmoplastic medulloblastoma subtypes (p = 0.04). Ring enhancement correlated with tumor necrosis (p = 0.022) and with the LC or anaplastic medulloblastoma histologic subtype (p < 0.001). CONCLUSION The LC or anaplastic medulloblastoma subtype was associated with increased ADC and with ring enhancement, the latter of which correlated with tumor necrosis. These features could be considered in the evaluation of high-risk medulloblastoma subtypes.


Cytometry Part B-clinical Cytometry | 2017

Single cell analysis of human tissues and solid tumors with mass cytometry

Nalin Leelatian; Deon B. Doxie; Allison R. Greenplate; Bret C. Mobley; Jonathan M. Lehman; Justine Sinnaeve; Rondi M. Kauffmann; Jay A. Werkhaven; Akshitkumar M. Mistry; Kyle D. Weaver; Reid C. Thompson; Pierre P. Massion; Mary A. Hooks; Mark C. Kelley; Lola B. Chambless; Rebecca A. Ihrie; Jonathan M. Irish

Mass cytometry measures 36 or more markers per cell and is an appealing platform for comprehensive phenotyping of cells in human tissue and tumor biopsies. While tissue disaggregation and fluorescence cytometry protocols were pioneered decades ago, it is not known whether established protocols will be effective for mass cytometry and maintain cancer and stromal cell diversity.


Journal of Neurology | 2013

Adult-onset leukoencephalopathy with neuroaxonal spheroids and pigmented glia: report of five cases and a new mutation

Kirk Kleinfeld; Bret C. Mobley; Peter Hedera; Adam Wegner; Subramaniam Sriram; Siddharama Pawate

The objective of this work is to report on a series of five patients with adult-onset leukoencephalopathy with neuroaxonal spheroids and pigmented glia (ALSP). ALSP is a rare adult-onset leukodystrophy, which encompasses hereditary diffuse leukoencephalopathy with axonal spheroids and pigmentary orthochromatic leukodystrophy. This was a retrospective chart review and literature review. Five previously healthy women presented with a rapidly progressive neurological disorder at ages 39, 37, 40, 30, and 47, respectively. All five individuals were initially diagnosed as suffering from multiple sclerosis. The clinical courses of the five patients were dominated by progressive spastic quadriparesis (patient 5, newly diagnosed, has paraparesis at this time) and dementia. Brain magnetic resonance imaging (MRI) showed diffuse cerebral atrophy, corpus callosal atrophy, and diffuse T2 hyperintensities in the subcortical and periventricular white matter with no gadolinium enhancing lesions. Three patients showed involvement of pyramidal tracts from motor cortex to the brainstem. Cerebrospinal fluid was normal in all cases. Diagnosis of ALSP was established by biopsy (two cases) and autopsy (two cases). Histopathology showed the presence of neuroaxonal spheroids in all four cases and pigmented glia in three. In the fifth case, diagnosis was established by genetic analysis alone that showed a disease-causing mutation in the colony-stimulating factor 1 receptor (CSF1R) gene. Genetic analysis was done in three patients with available DNA, and identified the disease-causing mutation in all three, including a novel mutation F828S. ALSP may be suspected in adults with rapid to subacute progression of neurological disease when (1) MRI shows corpus callosal atrophy on a background of generalized brain atrophy and diffuse white matter disease without postcontrast enhancement, (2) CSF studies are normal, and (3) studies for systemic inflammatory diseases and specific leukodystrophies are normal. Diagnosis may be made without histopathological evidence when a disease-causing mutation is demonstrated in the CSF1R gene.


Laryngoscope | 2003

Delivery of an Adenoviral Vector to the Crushed Recurrent Laryngeal Nerve

Adam D. Rubin; Bret C. Mobley; Norman D. Hogikyan; Kimberly Bell; Kelli A. Sullivan; Nicholas M. Boulis; Eva L. Feldman

Objectives Objectives were to create a model of recurrent laryngeal nerve injury for testing the efficacy of potential therapeutic viral gene therapy vectors and to demonstrate that remote injection of a viral vector does not cause significant additional neuronal injury.


Clinical Neuropathology | 2009

A novel homozygous SCO2 mutation, p.G193S, causing fatal infantile cardioencephalomyopathy

Bret C. Mobley; Gregory M. Enns; L. J. Wong; Hannes Vogel

Cytochrome c oxidase (COX) deficiency is a frequent cause of mitochondrial disease in infants. Mutations in the COX assembly gene SCO2 cause fatal infantile cardioencephalomyopathy. All patients reported to date with SCO2 deficiency share a common p.E140K mutation in at least 1 allele. In order to further the understanding of the genotype-phenotype spectrum associated with fatal infantile cardioencephalomyopathy, we describe a novel homozygous SCO2 mutation p.G193S in a patient with fatal infantile cardioencephalomyopathy born to consanguineous parents of Indian ancestry.

Collaboration


Dive into the Bret C. Mobley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lola B. Chambless

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Akshitkumar M. Mistry

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dai H. Chung

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Raisanen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge