Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett D. Lindenbach is active.

Publication


Featured researches published by Brett D. Lindenbach.


Nature Methods | 2005

Identification of microRNAs of the herpesvirus family

Sébastien Pfeffer; Alain Sewer; Mariana Lagos-Quintana; Robert L. Sheridan; Chris Sander; Friedrich A. Grässer; Linda F. van Dyk; C. Kiong Ho; Stewart Shuman; Minchen Chien; James J. Russo; Jingyue Ju; Glenn Randall; Brett D. Lindenbach; Charles M. Rice; Viviana Simon; David D. Ho; Mihaela Zavolan; Thomas Tuschl

Epstein-Barr virus (EBV or HHV4), a member of the human herpesvirus (HHV) family, has recently been shown to encode microRNAs (miRNAs). In contrast to most eukaryotic miRNAs, these viral miRNAs do not have close homologs in other viral genomes or in the genome of the human host. To identify other miRNA genes in pathogenic viruses, we combined a new miRNA gene prediction method with small-RNA cloning from several virus-infected cell types. We cloned ten miRNAs in the Kaposi sarcoma–associated virus (KSHV or HHV8), nine miRNAs in the mouse gammaherpesvirus 68 (MHV68) and nine miRNAs in the human cytomegalovirus (HCMV or HHV5). These miRNA genes are expressed individually or in clusters from either polymerase (pol) II or pol III promoters, and share no substantial sequence homology with one another or with the known human miRNAs. Generally, we predicted miRNAs in several large DNA viruses, and we could neither predict nor experimentally identify miRNAs in the genomes of small RNA viruses or retroviruses.


Nature | 2005

Unravelling hepatitis C virus replication from genome to function

Brett D. Lindenbach; Charles M. Rice

Since the discovery of the hepatitis C virus over 15 years ago, scientists have raced to develop diagnostics, study the virus and find new therapies. Yet virtually every attempt to dissect this pathogen has met with roadblocks that impeded progress. Its replication was restricted to humans or experimentally infected chimpanzees, and efficient growth of the virus in cell culture failed until very recently. Nevertheless hard-fought progress has been made and the first wave of antiviral drugs is entering clinical trials.


Advances in Virus Research | 2003

Molecular biology of flaviviruses

Brett D. Lindenbach; Charles M. Rice

An overview of the molecular biology of the flaviviruses is presented. The members of this virus family are enveloped positive-strand RNA viruses capable of causing a number of important human diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cellular cofactors affecting hepatitis C virus infection and replication

Glenn Randall; Maryline Panis; Jacob D. Cooper; Timothy L. Tellinghuisen; Karen E. Sukhodolets; Sébastien Pfeffer; Markus Landthaler; Pablo Landgraf; Sherry Kan; Brett D. Lindenbach; Minchen Chien; David B. Weir; James J. Russo; Jingyue Ju; Michael J. Brownstein; Robert L. Sheridan; Chris Sander; Mihaela Zavolan; Thomas Tuschl; Charles M. Rice

Recently identified hepatitis C virus (HCV) isolates that are infectious in cell culture provide a genetic system to evaluate the significance of virus–host interactions for HCV replication. We have completed a systematic RNAi screen wherein siRNAs were designed that target 62 host genes encoding proteins that physically interact with HCV RNA or proteins or belong to cellular pathways thought to modulate HCV infection. This includes 10 host proteins that we identify in this study to bind HCV NS5A. siRNAs that target 26 of these host genes alter infectious HCV production >3-fold. Included in this set of 26 were siRNAs that target Dicer, a principal component of the RNAi silencing pathway. Contrary to the hypothesis that RNAi is an antiviral pathway in mammals, as has been reported for subgenomic HCV replicons, siRNAs that target Dicer inhibited HCV replication. Furthermore, siRNAs that target several other components of the RNAi pathway also inhibit HCV replication. MicroRNA profiling of human liver, human hepatoma Huh-7.5 cells, and Huh-7.5 cells that harbor replicating HCV demonstrated that miR-122 is the predominant microRNA in each environment. miR-122 has been previously implicated in positively regulating the replication of HCV genotype 1 replicons. We find that 2′-O-methyl antisense oligonucleotide depletion of miR-122 also inhibits HCV genotype 2a replication and infectious virus production. Our data define 26 host genes that modulate HCV infection and indicate that the requirement for functional RNAi for HCV replication is dominant over any antiviral activity this pathway may exert against HCV.


Journal of Virology | 2006

Time- and Temperature-Dependent Activation of Hepatitis C Virus for Low-pH-Triggered Entry

Donna M. Tscherne; Christopher T. Jones; Matthew J. Evans; Brett D. Lindenbach; Jane A. McKeating; Charles M. Rice

ABSTRACT Hepatitis C virus (HCV) is an important human pathogen associated with chronic liver disease. Recently, based on a genotype 2a isolate, tissue culture systems supporting complete replication and infectious virus production have been developed. In this study, we used cell culture-produced infectious HCV to analyze the viral entry pathway into Huh-7.5 cells. Bafilomycin A1 and concanamycin A, inhibitors of vacuolar ATPases, prevented HCV entry when they were present prior to infection and had minimal effect on downstream replication events. HCV entry therefore appears to be pH dependent, requiring an acidified intracellular compartment. For many other enveloped viruses, acidic pH triggers an irreversible conformational change, which promotes virion-endosomal membrane fusion. Such viruses are often inactivated by low pH. In the case of HCV, exposure of virions to acidic pH followed by return to neutral pH did not affect their infectivity. This parallels the observation made for the related pestivirus bovine viral diarrhea virus. Low pH could activate the entry of cell surface-bound HCV but only after prolonged incubation at 37°C. This suggests that there are rate-limiting, postbinding events that are needed to render HCV competent for low-pH-triggered entry. Such events may involve interaction with a cellular coreceptor or other factors but do not require cathepsins B and L, late endosomal proteases that activate Ebola virus and reovirus for entry.


Journal of Virology | 2004

Insertion of Green Fluorescent Protein into Nonstructural Protein 5A Allows Direct Visualization of Functional Hepatitis C Virus Replication Complexes

Darius Moradpour; Matthew J. Evans; Rainer Gosert; Zhenghong Yuan; Hubert E. Blum; Stephen P. Goff; Brett D. Lindenbach; Charles M. Rice

ABSTRACT Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex, composed of viral proteins, replicating RNA and altered cellular membranes. We describe here HCV replicons that allow the direct visualization of functional HCV replication complexes. Viable replicons selected from a library of Tn7-mediated random insertions in the coding sequence of nonstructural protein 5A (NS5A) allowed the identification of two sites near the NS5A C terminus that tolerated insertion of heterologous sequences. Replicons encoding green fluorescent protein (GFP) at these locations were only moderately impaired for HCV RNA replication. Expression of the NS5A-GFP fusion protein could be demonstrated by immunoblot, indicating that the GFP was retained during RNA replication and did not interfere with HCV polyprotein processing. More importantly, expression levels were robust enough to allow direct visualization of the fusion protein by fluorescence microscopy. NS5A-GFP appeared as brightly fluorescing dot-like structures in the cytoplasm. By confocal laser scanning microscopy, NS5A-GFP colocalized with other HCV nonstructural proteins and nascent viral RNA, indicating that the dot-like structures, identified as membranous webs by electron microscopy, represent functional HCV replication complexes. These findings reveal an unexpected flexibility of the C-terminal domain of NS5A and provide tools for studying the formation and turnover of HCV replication complexes in living cells.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus

David B. Kushner; Brett D. Lindenbach; Valery Z. Grdzelishvili; Amine Noueiry; Scott M. Paul; Paul Ahlquist

Positive-strand RNA viruses are the largest virus class and include many pathogens such as hepatitis C virus and the severe acute respiratory syndrome coronavirus (SARS). Brome mosaic virus (BMV) is a representative positive-strand RNA virus whose RNA replication, gene expression, and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. By using traditional yeast genetics, host genes have been identified that function in controlling BMV translation, selecting BMV RNAs as replication templates, activating the replication complex, maintaining a lipid composition required for membrane-associated RNA replication, and other steps. To more globally and systematically identify such host factors, we used engineered BMV derivatives to assay viral RNA replication in each strain of an ordered, genome-wide set of yeast single-gene deletion mutants. Each deletion strain was transformed to express BMV replicase proteins and a BMV RNA replication template with the capsid gene replaced by a luciferase reporter. Luciferase expression, which is dependent on viral RNA replication and RNA-dependent mRNA synthesis, was measured in intact yeast cells. Approximately 4,500 yeast deletion strains (≈80% of yeast genes) were screened in duplicate and selected strains analyzed further. This functional genomics approach revealed nearly 100 genes whose absence inhibited or stimulated BMV RNA replication and/or gene expression by 3- to >25-fold. Several of these genes were shown previously to function in BMV replication, validating the approach. Newly identified genes include some in RNA, protein, or membrane modification pathways and genes of unknown function. The results further illuminate virus and cell pathways. Further refinement of virus screening likely will reveal contributions from additional host genes.


Nature Reviews Microbiology | 2013

The ins and outs of hepatitis C virus entry and assembly

Brett D. Lindenbach; Charles M. Rice

Hepatitis C virus, a major human pathogen, produces infectious virus particles with several unique features, such as an ability to interact with serum lipoproteins, a dizzyingly complicated process of virus entry, and a pathway of virus assembly and release that is closely linked to lipoprotein secretion. Here, we review these unique features, with an emphasis on recent discoveries concerning virus particle structure, virus entry and virus particle assembly and release.


Cell | 2016

Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection

Laura J. Yockey; Luis M. Varela; Tasfia Rakib; William Khoury-Hanold; Bernardo Stutz; Klara Szigeti-Buck; Anthony N. van den Pol; Brett D. Lindenbach; Tamas L. Horvath; Akiko Iwasaki

Zika virus (ZIKV) can be transmitted sexually between humans. However, it is unknown whether ZIKV replicates in the vagina and impacts the unborn fetus. Here, we establish a mouse model of vaginal ZIKV infection and demonstrate that, unlike other routes, ZIKV replicates within the genital mucosa even in wild-type (WT) mice. Mice lacking RNA sensors or transcription factors IRF3 and IRF7 resulted in higher levels of local viral replication. Furthermore, mice lacking the type I interferon (IFN) receptor (IFNAR) became viremic and died of infection after a high-dose vaginal ZIKV challenge. Notably, vaginal infection of pregnant dams during early pregnancy led to fetal growth restriction and infection of the fetal brain in WT mice. This was exacerbated in mice deficient in IFN pathways, leading to abortion. Our study highlights the vaginal tract as a highly susceptible site of ZIKV replication and illustrates the dire disease consequences during pregnancy.


Hepatology | 2006

Oxidized low-density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells.

Thomas von Hahn; Brett D. Lindenbach; Agnès Boullier; Oswald Quehenberger; Matthew Paulson; Charles M. Rice; Jane A. McKeating

Cell entry of hepatitis C virus, pseudoparticles (HCVpp) and cell culture grown virus (HCVcc), requires the interaction of viral glycoproteins with CD81 and other as yet unknown cellular factors. One of these is likely to be the scavenger receptor class B type I (SR‐BI). To further understand the role of SR‐BI, we examined the effect of SR‐BI ligands on HCVpp and HCVcc infectivity. Oxidized low‐density lipoprotein (oxLDL), but not native LDL, potently inhibited HCVpp and HCVcc cell entry. Pseudoparticles bearing unrelated viral glycoproteins or bovine viral diarrhea virus were not affected. A dose‐dependent inhibition was observed for HCVpp bearing diverse viral glycoproteins with an approximate IC50 of 1.5 μg/mL apolipoprotein content, which is within the range of oxLDL reported to be present in human plasma. The ability of lipoprotein components to bind to target cells associated with their antiviral activity, suggesting a mechanism of action which targets a cell surface receptor critical for HCV infection of the host cell. However, binding of soluble E2 to SR‐BI or CD81 was not affected by oxLDL, suggesting that oxLDL does not act as a simple receptor blocker. At the same time, oxLDL incubation altered the biophysical properties of HCVpp, suggesting a ternary interaction of oxLDL with both virus and target cells. In conclusion, the SR‐BI ligand oxLDL is a potent cell entry inhibitor for a broad range of HCV strains in vitro. These findings suggest that SR‐BI is an essential component of the cellular HCV receptor complex. (HEPATOLOGY 2006;43:932–942.)

Collaboration


Dive into the Brett D. Lindenbach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew J. Evans

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge