Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett E. Phillips is active.

Publication


Featured researches published by Brett E. Phillips.


Diabetes Care | 2011

Phase I (Safety) Study of Autologous Tolerogenic Dendritic Cells in Type 1 Diabetic Patients

Nick Giannoukakis; Brett E. Phillips; David N. Finegold; Jo Harnaha; Massimo Trucco

OBJECTIVE The safety of dendritic cells to selectively suppress autoimmunity, especially in type 1 diabetes, has never been ascertained. We investigated the safety of autologous dendritic cells, stabilized into an immunosuppressive state, in established adult type 1 diabetic patients. RESEARCH DESIGN AND METHODS A randomized, double-blind, phase I study was conducted. A total of 10, otherwise generally healthy, insulin-requiring type 1 diabetic patients between 18 and 60 years of age, without any other known or suspected health conditions, received autologous dendritic cells, unmanipulated or engineered ex vivo toward an immunosuppressive state. Ten million cells were administered intradermally in the abdomen once every 2 weeks for a total of four administrations. The primary end point determined the proportion of patients with adverse events on the basis of the physician’s global assessment, hematology, biochemistry, and immune monitoring for a period of 12 months. RESULTS The dendritic cells were safely tolerated. There were no discernible adverse events in any patient throughout the study. Other than a significant increase in the frequency of peripheral B220+ CD11c− B cells, mainly seen in the recipients of engineered dendritic cells during the dendritic cell administration period, there were no statistically relevant differences in other immune populations or biochemical, hematological, and immune biomarkers compared with baseline. CONCLUSIONS Treatment with autologous dendritic cells, in a native state or directed ex vivo toward a tolerogenic immunosuppressive state, is safe and well tolerated. Dendritic cells upregulated the frequency of a potentially beneficial B220+ CD11c− B-cell population, at least in type 1 diabetes autoimmunity.


Experimental Eye Research | 2008

Glucocorticoids induce transactivation of tight junction genes occludin and claudin-5 in retinal endothelial cells via a novel cis-element.

Edward A. Felinski; Amy E. Cox; Brett E. Phillips; David A. Antonetti

Tight junctions between vascular endothelial cells help to create the blood-brain and blood-retinal barriers. Breakdown of the retinal tight junction complex is problematic in several disease states including diabetic retinopathy. Glucocorticoids can restore and/or preserve the endothelial barrier to paracellular permeability, although the mechanism remains unclear. We show that glucocorticoid treatment of primary retinal endothelial cells increases content of the tight junction proteins occludin and claudin-5, co-incident with an increase in barrier properties of endothelial monolayers. The glucocorticoid receptor antagonist RU486 reverses both the glucocorticoid-stimulated increase in occludin content and the increase in barrier properties. Transcriptional activity from the human occludin and claudin-5 promoters increases in retinal endothelial cells upon glucocorticoid treatment, and is dependent on the glucocorticoid receptor (GR) as demonstrated by siRNA. Deletion analysis of the occludin promoter reveals a 205bp sequence responsible for the glucocorticoid response. However, this region does not possess a canonical glucocorticoid response element and does not bind to the GR in a chromatin immunoprecipitation (ChIP) assay. Mutational analysis of this region revealed a novel 40bp occludin enhancer element (OEE), containing two highly conserved regions of 10 and 13 base pairs, that is both necessary and sufficient for glucocorticoid-induced gene expression in retinal endothelial cells. These data suggest a novel mechanism for glucocorticoid induction of vascular endothelial barrier properties through increased occludin and claudin-5 gene expression.


Diabetes | 2008

A Microsphere-Based Vaccine Prevents and Reverses New-Onset Autoimmune Diabetes

Brett E. Phillips; Karen Nylander; Jo Harnaha; Jennifer Machen; Robert Lakomy; Alexis Styche; Kimberly A. Gillis; Larry Brown; Debra Lafreniere; Michael Gallo; Janet Knox; Kenneth Hogeland; Massimo Trucco; Nick Giannoukakis

OBJECTIVE—This study was aimed at ascertaining the efficacy of antisense oligonucleotide-formulated microspheres to prevent type 1 diabetes and to reverse new-onset disease. RESEARCH DESIGN AND METHODS—Microspheres carrying antisense oligonucleotides to CD40, CD80, and CD86 were delivered into NOD mice. Glycemia was monitored to determine disease prevention and reversal. In recipients that remained and/or became diabetes free, spleen and lymph node T-cells were enriched to determine the prevalence of Foxp3+ putative regulatory T-cells (Treg cells). Splenocytes from diabetes-free microsphere-treated recipients were adoptively cotransferred with splenocytes from diabetic NOD mice into NOD-scid recipients. Live-animal in vivo imaging measured the microsphere accumulation pattern. To rule out nonspecific systemic immunosuppression, splenocytes from successfully treated recipients were pulsed with β-cell antigen or ovalbumin or cocultured with allogeneic splenocytes. RESULTS—The microspheres prevented type 1 diabetes and, most importantly, exhibited a capacity to reverse clinical hyperglycemia, suggesting reversal of new-onset disease. The microspheres augmented Foxp3+ Treg cells and induced hyporesponsiveness to NOD-derived pancreatic β-cell antigen, without compromising global immune responses to alloantigens and nominal antigens. T-cells from successfully treated mice suppressed adoptive transfer of disease by diabetogenic splenocytes into secondary immunodeficient recipients. Finally, microspheres accumulated within the pancreas and the spleen after either intraperitoneal or subcutaneous injection. Dendritic cells from spleen of the microsphere-treated mice exhibit decreased cell surface CD40, CD80, and CD86. CONCLUSIONS—This novel microsphere formulation represents the first diabetes-suppressive and reversing nucleic acid vaccine that confers an immunoregulatory phenotype to endogenous dendritic cells.


Diabetes | 2011

FoxO6 Integrates Insulin Signaling With Gluconeogenesis in the Liver

Dae Hyun Kim; German Perdomo; Ting Zhang; Sandra Slusher; Sojin Lee; Brett E. Phillips; Yong Fan; Nick Giannoukakis; Roberto Gramignoli; Stephen C. Strom; Steven Ringquist; H. Henry Dong

OBJECTIVE Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. This effect stems from inept insulin suppression of hepatic gluconeogenesis. To understand the underlying mechanisms, we studied the ability of forkhead box O6 (FoxO6) to mediate insulin action on hepatic gluconeogenesis and its contribution to glucose metabolism. RESEARCH DESIGN AND METHODS We characterized FoxO6 in glucose metabolism in cultured hepatocytes and in rodent models of dietary obesity, insulin resistance, or insulin-deficient diabetes. We determined the effect of FoxO6 on hepatic gluconeogenesis in genetically modified mice with FoxO6 gain- versus loss-of-function and in diabetic db/db mice with selective FoxO6 ablation in the liver. RESULTS FoxO6 integrates insulin signaling to hepatic gluconeogenesis. In mice, elevated FoxO6 activity in the liver augments gluconeogenesis, raising fasting blood glucose levels, and hepatic FoxO6 depletion suppresses gluconeogenesis, resulting in fasting hypoglycemia. FoxO6 stimulates gluconeogenesis, which is counteracted by insulin. Insulin inhibits FoxO6 activity via a distinct mechanism by inducing its phosphorylation and disabling its transcriptional activity, without altering its subcellular distribution in hepatocytes. FoxO6 becomes deregulated in the insulin-resistant liver, accounting for its unbridled activity in promoting gluconeogenesis and correlating with the pathogenesis of fasting hyperglycemia in diabetes. These metabolic abnormalities, along with fasting hyperglycemia, are reversible by selective inhibition of hepatic FoxO6 activity in diabetic mice. CONCLUSIONS Our data uncover a FoxO6-dependent pathway by which the liver orchestrates insulin regulation of gluconeogenesis, providing the proof-of-concept that selective FoxO6 inhibition is beneficial for curbing excessive hepatic glucose production and improving glycemic control in diabetes.


PLOS ONE | 2010

Identification of a Cardiac Specific Protein Transduction Domain by In Vivo Biopanning Using a M13 Phage Peptide Display Library in Mice

Maliha Zahid; Brett E. Phillips; Sean M. Albers; Nick Giannoukakis; Simon C. Watkins; Paul D. Robbins

Background A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s) able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library. Methods and Results A cardiomyoblast cell line, H9C2, was incubated with a M13 phage 12 amino acid peptide display library. Internalized phage was recovered, amplified and then subjected to a total of three rounds of in vivo biopanning where infectious phage was isolated from cardiac tissue following intravenous injection. After the third round, 60% of sequenced plaques carried the peptide sequence APWHLSSQYSRT, termed cardiac targeting peptide (CTP). We demonstrate that CTP was able to transduce cardiomyocytes functionally in culture in a concentration and cell-type dependent manner. Mice injected with CTP showed significant transduction of heart tissue with minimal uptake by lung and kidney capillaries, and no uptake in liver, skeletal muscle, spleen or brain. The level of heart transduction by CTP also was greater than with a cationic transduction domain. Conclusions Biopanning using a peptide phage display library identified a peptide able to transduce heart tissue in vivo efficiently and specifically. CTP could be used to deliver therapeutic peptides, proteins and nucleic acid specifically to the heart.


Clinical and Experimental Immunology | 2013

Retinoic acid-producing, ex-vivo-generated human tolerogenic dendritic cells induce the proliferation of immunosuppressive B lymphocytes

V. Di Caro; Brett E. Phillips; C. Engman; Jo Harnaha; Massimo Trucco; Nick Giannoukakis

While much is known about tolerogenic dendritic cell effects on forkhead box protein 3 (FoxP3)+ regulatory T cells, virtually nothing is known about their effects on another arm of immunoregulation that is mediated by a subpopulation of immunosuppressive B cells. These cells suppress rheumatoid arthritis, lupus and inflammatory bowel disease in mice, and functional defects have been reported in human lupus. We show that co‐stimulation‐impaired tolerogenic dendritic cells that prevent and reverse type 1 diabetes mellitus induce the proliferation of human immunosuppressive B cells in vitro. We also show that the suppressive properties of these B cells concentrate inside the CD19+CD24+ B cell population and more specifically inside the CD19+CD24+CD38+ regulatory B cell population. We discovered that B cell conversion into suppressive cells in vitro is partially dependent on dendritic cell production of retinoic acid and also that CD19+CD24+CD38+ B regulatory cells express retinoic acid receptors. Taken together, our data suggest a model whereby part of the immunosuppressive properties of human tolerogenic dendritic cells could be mediated by retinoic acid which, in addition to its known role in favouring T cell differentiation to FoxP3+ regulatory T cells, acts to convert B cells into immunosuppressive cells.


Investigative Ophthalmology & Visual Science | 2008

Occludin Independently Regulates Permeability under Hydrostatic Pressure and Cell Division in Retinal Pigment Epithelial Cells

Brett E. Phillips; Limary M. Cancel; John M. Tarbell; David A. Antonetti

PURPOSE The aim of this study was to determine the function of the tight junction protein occludin in the control of permeability, under diffusive and hydrostatic pressures, and its contribution to the control of cell division in retinal pigment epithelium. METHODS Occludin expression was inhibited in the human retinal pigment epithelial cell line ARPE-19 by siRNA. Depletion of occludin was confirmed by Western blot, confocal microscopy, and RT-PCR. Paracellular permeability of cell monolayers to fluorescently labeled 70 kDa dextran, 10 kDa dextran, and 467 Da tetramethylrhodamine (TAMRA) was examined under diffusive conditions or after the application of 10 cm H2O transmural pressure. Cell division rates were determined by tritiated thymidine incorporation and Ki67 immunoreactivity. Cell cycle inhibitors were used to determine whether changes in cell division affected permeability. RESULTS Occludin depletion increased diffusive paracellular permeability to 467 Da TAMRA by 15%, and permeability under hydrostatic pressure was increased 50% compared with control. Conversely, depletion of occludin protein with siRNA did not alter diffusive permeability to 70 kDa and 10 kDa RITC-dextran, and permeability to 70 kDa dextran was twofold lower in occludin-depleted cells under hydrostatic pressure conditions. Occludin depletion also increased thymidine incorporation by 90% and Ki67-positive cells by 50%. Finally, cell cycle inhibitors did not alter the effect of occludin siRNA on paracellular permeability. CONCLUSIONS The data suggest that occludin regulates tight junction permeability in response to changes in hydrostatic pressure. Furthermore, these data suggest that occludin also contributes to the control of cell division, demonstrating a novel function for this tight junction protein.


Pediatric Diabetes | 2008

Toward a cure for type 1 diabetes mellitus: diabetes-suppressive dendritic cells and beyond

Nick Giannoukakis; Brett E. Phillips; Massimo Trucco

Abstract:  Insulin has been the gold standard therapy for diabetes since its discovery and commercial availability. It remains the only pharmacologic therapy for type 1 diabetes (T1D), an autoimmune disease in which autoreactive T cells specifically kill the insulin‐producing beta cells. Nevertheless, not even molecularly produced insulin administered four or five times per day can provide a physiologic regulation able to prevent the complications that account for the morbidity and mortality of diabetic patients. Also, insulin does not eliminate the T1D hallmark: beta‐cell‐specific autoimmunity. In other words, insulin is not a ‘cure’. A successful cure must meet the following criteria: (i) it must either replace or maintain the functional integrity of the natural, insulin‐producing tissue, the endocrine islets of Langerhans’ and, more specifically, the insulin‐producing beta cells; (ii) it must, at least, control the autoimmunity or eliminate it altogether; and (iii) it must be easy to apply to a large number of patients. Criterion 1 has been partially realized by allogeneic islet transplantation. Criterion 2 has been partially realized using monoclonal antibodies specific for T‐cell surface proteins. Criterion 3 has yet to be realized, given that most of the novel therapies are currently quasi‐patient‐specific. Herein, we outline the current status of non‐insulin‐based therapies for T1D, with a focus on cell‐based immunomodulation which we propose can achieve all three criteria illustrated above.


PLOS ONE | 2014

Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice.

Valentina Di Caro; Brett E. Phillips; C. Engman; Jo Harnaha; Massimo Trucco; Nick Giannoukakis

The objective of the study was to identify immune cell populations, in addition to Foxp3+ T-regulatory cells, that participate in the mechanisms of action of tolerogenic dendritic cells shown to prevent and reverse type 1 diabetes in the Non-Obese Diabetic (NOD) mouse strain. Co-culture experiments using tolerogenic dendritic cells and B-cells from NOD as well as transgenic interleukin-10 promoter-reporter mice along with transfer of tolerogenic dendritic cells and CD19+ B-cells into NOD and transgenic mice, showed that these dendritic cells increased the frequency and numbers of interleukin-10-expressing B-cells in vitro and in vivo. The expansion of these cells was a consequence of both the proliferation of pre-existing interleukin-10-expressing B-lymphocytes and the conversion of CD19+ B-lymphcytes into interleukin-10-expressing cells. The tolerogenic dendritic cells did not affect the suppressive activity of these B-cells. Furthermore, we discovered that the suppressive murine B-lymphocytes expressed receptors for retinoic acid which is produced by the tolerogenic dendritic cells. These data assist in identifying the nature of the B-cell population increased in response to the tolerogenic dendritic cells in a clinical trial and also validate very recent findings demonstrating a mechanistic link between human tolerogenic dendritic cells and immunosuppressive regulatory B-cells.


Clinical & Developmental Immunology | 2011

Current state of type 1 diabetes immunotherapy: incremental advances, huge leaps, or more of the same?

Brett E. Phillips; Massimo Trucco; Nick Giannoukakis

Thus far, none of the preclinically successful and promising immunomodulatory agents for type 1 diabetes mellitus (T1DM) has conferred stable, long-term insulin independence to diabetic patients. The majority of these immunomodulators are humanised antibodies that target immune cells or cytokines. These as well as fusion proteins and inhibitor proteins all share varying adverse event occurrence and severity. Other approaches have included intact putative autoantigens or autoantigen peptides. Considerable logistical outlays have been deployed to develop and to translate humanised antibodies targeting immune cells, cytokines, and cytokine receptors to the clinic. Very recent phase III trials with the leading agent, a humanised anti-CD3 antibody, call into question whether further development of these biologics represents a step forward or more of the same. Combination therapies of one or more of these humanised antibodies are also being considered, and they face identical, if not more serious, impediments and safety issues. This paper will highlight the preclinical successes and the excitement generated by phase II trials while offering alternative possibilities and new translational avenues that can be explored given the very recent disappointment in leading agents in more advanced clinical trials.

Collaboration


Dive into the Brett E. Phillips's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massimo Trucco

Allegheny Health Network

View shared research outputs
Top Co-Authors

Avatar

David I. Soybel

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Shannon L. Kelleher

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Abby K. Geletzke

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jo Harnaha

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Engman

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Abigail B. Podany

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge