Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett M. Paterson is active.

Publication


Featured researches published by Brett M. Paterson.


ACS Nano | 2015

Engineering poly(ethylene glycol) particles for improved biodistribution.

Jiwei Cui; R. De Rose; Karen Alt; Sheilajen Alcantara; Brett M. Paterson; Kang Liang; Ming Hu; Joseph J. Richardson; Yan Yan; Cm Jeffrey; Roger I. Price; Karlheinz Peter; Christoph E. Hagemeyer; Paul S. Donnelly; Stephen J. Kent; Frank Caruso

We report the engineering of poly(ethylene glycol) (PEG) hydrogel particles using a mesoporous silica (MS) templating method via tuning the PEG molecular weight, particle size, and the presence or absence of the template and investigate the cell association and biodistribution of these particles. An ex vivo assay based on human whole blood that is more sensitive and relevant than traditional cell-line based assays for predicting in vivo circulation behavior is introduced. The association of MS@PEG particles (template present) with granulocytes and monocytes is higher compared with PEG particles (template absent). Increasing the PEG molecular weight (from 10 to 40 kDa) or decreasing the PEG particle size (from 1400 to 150 nm) reduces phagocytic blood cell association of the PEG particles. Mice biodistribution studies show that the PEG particles exhibit extended circulation times (>12 h) compared with the MS@PEG particles and that the retention of smaller PEG particles (150 nm) in blood, when compared with larger PEG particles (>400 nm), is increased at least 4-fold at 12 h after injection. Our findings highlight the influence of unique aspects of polymer hydrogel particles on biological interactions. The reported PEG hydrogel particles represent a new class of polymer carriers with potential biomedical applications.


Inorganic Chemistry | 2010

Versatile New Bis(thiosemicarbazone) Bifunctional Chelators: Synthesis, Conjugation to Bombesin(7−14)-NH2, and Copper-64 Radiolabeling

Brett M. Paterson; John A. Karas; Denis B. Scanlon; Jonathan M. White; Paul S. Donnelly

New bifunctional derivatives of diacetyl-bis(4-methylthiosemicarbazone) (H(2)atsm) have been prepared by a selective transamination reaction of a new dissymmetric bis(thiosemicarbazone) precursor H(2)L(1). The new derivatives contain an aliphatic carboxylic acid (H(2)L(2) and H(2)L(3)), t-butyl carbamate (H(2)L(4)), or ammonium ion (H(2)L(5)) functional group. The new ligands and copper(II) complexes have been characterized by NMR spectroscopy, mass spectrometry, and microanalysis. The complex Cu(II)(L(4)) was structurally characterized by X-ray crystallography and shows the metal center to be in an N(2)S(2) distorted square planar coordination geometry. Electrochemical measurements show that the copper(II) complexes undergo a reversible reduction attributable to a Cu(II)/Cu(I) process. The ligands and the copper(II) complexes featuring a carboxylic acid functional group have been conjugated to the tumor targeting peptide bombesin(7-14)-NH(2). The bifunctional peptide conjugates were radiolabeled with copper-64 in the interest of developing new positron emission tomography (PET) imaging agents. The conjugates were radiolabeled with copper-64 rapidly in high radiochemical purity (>95%) at room temperature under mild conditions and were stable in a cysteine and histidine challenge study.


Proceedings of the National Academy of Sciences of the United States of America | 2012

An impaired mitochondrial electron transport chain increases retention of the hypoxia imaging agent diacetylbis(4-methylthiosemicarbazonato)copperII

Paul S. Donnelly; Jeffrey R. Liddell; SinChun Lim; Brett M. Paterson; Michael A. Cater; Maria S. Savva; Alexandra I. Mot; Janine L. James; Ian A. Trounce; Anthony R. White; Peter J. Crouch

Radiolabeled diacetylbis(4-methylthiosemicarbazonato)copperII [CuII(atsm)] is an effective positron-emission tomography imaging agent for myocardial ischemia, hypoxic tumors, and brain disorders with regionalized oxidative stress, such as mitochondrial myopathy, encephalopathy, and lactic acidosis with stroke-like episodes (MELAS) and Parkinson’s disease. An excessively elevated reductive state is common to these conditions and has been proposed as an important mechanism affecting cellular retention of Cu from CuII(atsm). However, data from whole-cell models to demonstrate this mechanism have not yet been provided. The present study used a unique cell culture model, mitochondrial xenocybrids, to provide whole-cell mechanistic data on cellular retention of Cu from CuII(atsm). Genetic incompatibility between nuclear and mitochondrial encoded subunits of the mitochondrial electron transport chain (ETC) in xenocybrid cells compromises normal function of the ETC. As a consequence of this impairment to the ETC we show xenocybrid cells upregulate glycolytic ATP production and accumulate NADH. Compared to control cells the xenocybrid cells retained more Cu after being treated with CuII(atsm). By transfecting the cells with a metal-responsive element reporter construct the increase in Cu retention was shown to involve a CuII(atsm)-induced increase in intracellular bioavailable Cu specifically within the xenocybrid cells. Parallel experiments using cells grown under hypoxic conditions confirmed that a compromised ETC and elevated NADH levels contribute to increased cellular retention of Cu from CuII(atsm). Using these cell culture models our data demonstrate that compromised ETC function, due to the absence of O2 as the terminal electron acceptor or dysfunction of individual components of the ETC, is an important determinant in driving the intracellular dissociation of CuII(atsm) that increases cellular retention of the Cu.


Inorganic Chemistry | 2011

Mechanisms Controlling the Cellular Accumulation of Copper Bis(thiosemicarbazonato) Complexes

Katherine A. Price; Peter J. Crouch; Irene Volitakis; Brett M. Paterson; SinChun Lim; Paul S. Donnelly; Anthony R. White

Copper (Cu) bis(thiosemicarbazonato) metal complexes [Cu(II)(btsc)s] have unique tumor-imaging and treatment properties and more recently have revealed potent neuroprotective actions in animal and cell models of neurodegeneration. However, despite the continued development of Cu(II)(btsc)s as potential therapeutics or diagnostic agents, little is known of the mechanisms involved in cell uptake, subcellular trafficking, and efflux of this family of compounds. Because of their high lipophilicity, it has been assumed that cellular accumulation is through passive diffusion, although this has not been analyzed in detail. The role of efflux pathways in cell homeostasis of the complexes is also largely unknown. In the present study, we investigated the cellular accumulation of the Cu(II)(btsc) complexes Cu(II)(gtsm) and Cu(II)(atsm) in human neuronal (M17) and glial (U87MG) cell lines under a range of conditions. Collectively, the data strongly suggested that Cu(II)(gtsm) and Cu(II)(atsm) may be taken into these cells by combined passive and facilitated (protein-carrier-mediated) mechanisms. This was supported by strong temperature-dependent changes to the uptake of the complexes and the influence of the cell surface protein on Cu accumulation. We found no evidence to support a role for copper-transporter 1 in accumulation of the compounds. Importantly, our findings also demonstrated that Cu from both Cu(II)(gtsm) and Cu(II)(atsm) was rapidly effluxed from the cells through active mechanisms. Whether this was in the form of released ionic Cu or as an intact metal complex is not known. However, this finding highlighted the difficulty of trying to determine the uptake mechanism of metal complexes when efflux is occurring concomitantly. These findings are the first detailed exploration of the cellular accumulation mechanisms of Cu(II)(btsc)s. The study delineates strategies to investigate the uptake and efflux mechanisms of metal complexes in cells, while highlighting specific difficulties and challenges that need to be considered before drawing definitive conclusions.


Angewandte Chemie | 2014

Enzyme‐Mediated Site‐Specific Bioconjugation of Metal Complexes to Proteins: Sortase‐Mediated Coupling of Copper‐64 to a Single‐Chain Antibody

Brett M. Paterson; Karen Alt; Charmaine M. Jeffery; Roger I. Price; Shweta Jagdale; Sheena Rigby; Charlotte C. Williams; Karlheinz Peter; Christoph E. Hagemeyer; Paul S. Donnelly

The enzyme-mediated site-specific bioconjugation of a radioactive metal complex to a single-chain antibody using the transpeptidase sortase A is reported. Cage amine sarcophagine ligands that were designed to function as substrates for the sortase A mediated bioconjugation to antibodies were synthesized and enzymatically conjugated to a single-chain variable fragment. The antibody fragment scFv(anti-LIBS) targets ligand-induced binding sites (LIBS) on the glycoprotein receptor GPIIb/IIIa, which is present on activated platelets. The immunoconjugates were radiolabeled with the positron-emitting isotope (64)Cu. The new radiolabeled conjugates were shown to bind selectively to activated platelets. The diagnostic potential of the most promising conjugate was demonstrated in an in vivo model of carotid artery thrombosis using positron emission tomography. This approach gives homogeneous products through site-specific enzyme-mediated conjugation and should be broadly applicable to other metal complexes and proteins.


ACS Chemical Biology | 2013

Increasing Intracellular Bioavailable Copper Selectively Targets Prostate Cancer Cells

Michael A. Cater; Helen B. Pearson; Kamil Wolyniec; Paul Klaver; Maree Bilandzic; Brett M. Paterson; Ashley I. Bush; Patrick O. Humbert; Sharon La Fontaine; Paul S. Donnelly; Ygal Haupt

The therapeutic efficacy of two bis(thiosemicarbazonato) copper complexes, glyoxalbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(gtsm)] and diacetylbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(atsm)], for the treatment of prostate cancer was assessed in cell culture and animal models. Distinctively, copper dissociates intracellularly from Cu(II)(gtsm) but is retained by Cu(II)(atsm). We further demonstrated that intracellular H2gtsm [reduced Cu(II)(gtsm)] continues to redistribute copper into a bioavailable (exchangeable) pool. Both Cu(II)(gtsm) and Cu(II)(atsm) selectively kill transformed (hyperplastic and carcinoma) prostate cell lines but, importantly, do not affect the viability of primary prostate epithelial cells. Increasing extracellular copper concentrations enhanced the therapeutic capacity of both Cu(II)(gtsm) and Cu(II)(atsm), and their ligands (H2gtsm and H2atsm) were toxic only toward cancerous prostate cells when combined with copper. Treatment of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model with Cu(II)(gtsm) (2.5 mg/kg) significantly reduced prostate cancer burden (∼70%) and severity (grade), while treatment with Cu(II)(atsm) (30 mg/kg) was ineffective at the given dose. However, Cu(II)(gtsm) caused mild kidney toxicity in the mice, associated primarily with interstitial nephritis and luminal distention. Mechanistically, we demonstrated that Cu(II)(gtsm) inhibits proteasomal chymotrypsin-like activity, a feature further established as being common to copper-ionophores that increase intracellular bioavailable copper. We have demonstrated that increasing intracellular bioavailable copper can selectively kill cancerous prostate cells in vitro and in vivo and have revealed the potential for bis(thiosemicarbazone) copper complexes to be developed as therapeutics for prostate cancer.


Dalton Transactions | 2014

PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate

Brett M. Paterson; Peter Roselt; Delphine Denoyer; Carleen Cullinane; David Binns; Wayne Noonan; Charmaine M. Jeffery; Roger I. Price; Jonathan M. White; Rodney J. Hicks; Paul S. Donnelly

The use of copper radioisotopes in cancer diagnosis and radionuclide therapy is possible using chelators that are capable of binding Cu(II) with sufficient stability in vivo to provide high tumour-to-background contrast. Here we report the design and synthesis of a new bifunctional chelator, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid (MeCOSar), that forms copper complexes of exceptional stability by virtue of a cage amine (sarcophagine) ligand and a new conjugate referred to as SarTATE, obtained by the conjugation of MeCOSar to the tumour-targeting peptide Tyr(3)-octreotate. Radiolabeling of SarTATE with (64)Cu(II), a radioisotope suitable for positron emission tomography (PET), was fast (~20 min), easily performed at room temperature and consistently resulted in high radiochemical purity (>99%). In vitro and in vivo evaluation of (64)CuSarTATE demonstrated its high selectivity for tumour cells expressing somatostatin receptor 2 (sstr2). Biodistribution and PET imaging comparisons were made between (64)CuSarTATE and (64)Cu-labeled DOTA-Tyr(3)-octreotate ((64)CuDOTATATE). Both radiopharmaceuticals showed excellent uptake in sstr2-positive tumours at 2 h post-injection. While tumour uptake of (64)CuDOTATATE decreased significantly at 24 h, (64)CuSarTATE activity was retained, improving contrast at later time points. (64)CuSarTATE accumulated less than (64)CuDOTATATE in the non-target organs, liver and lungs. The uptake of (64)CuSarTATE in the kidneys was high at 2 h but showed significant clearance by 24 h. The new chemistry and pre-clinical evaluation presented here demonstrates that MeCOSar is a promising bifunctional chelator for Tyr(3)-octreotate that could be applied to a combined imaging and therapeutic regimen using a combination of (64)Cu- and (67)CuSarTATE complexes, owing to improved tumour-to-non-target organ ratios compared to (64)CuDOTATATE at longer time points.


Journal of the American Chemical Society | 2013

Diagnostic imaging agents for alzheimer's disease: Copper radiopharmaceuticals that target aβ plaques

James L. Hickey; SinChun Lim; David J. Hayne; Brett M. Paterson; Jonathan M. White; Victor L. Villemagne; Peter Roselt; David Binns; Carleen Cullinane; Charmaine M. Jeffery; Roger I. Price; Kevin J. Barnham; Paul S. Donnelly

One of the pathological hallmarks of Alzheimers disease is the presence of amyloid-β plaques in the brain and the major constituent of these plaques is aggregated amyloid-β peptide. New thiosemicarbazone-pyridylhydrazine based ligands that incorporate functional groups designed to bind amyloid-β plaques have been synthesized. The new ligands form stable four coordinate complexes with a positron-emitting radioactive isotope of copper, (64)Cu. Two of the new Cu(II) complexes include a functionalized styrylpyridine group and these complexes bind to amyloid-β plaques in samples of post-mortem human brain tissue. Strategies to increase brain uptake by functional group manipulation have led to a (64)Cu complex that effectively crosses the blood-brain barrier in wild-type mice. The new complexes described in this manuscript provide insight into strategies to deliver metal complexes to amyloid-β plaques.


Chemical Communications | 2010

A copper radiopharmaceutical for diagnostic imaging of Alzheimer's disease: a bis(thiosemicarbazonato)copper(II) complex that binds to amyloid-β plaques

SinChun Lim; Brett M. Paterson; Michelle Fodero-Tavoletti; Graeme O'Keefe; Roberto Cappai; Kevin J. Barnham; Victor L. Villemagne; Paul S. Donnelly

A bis(thiosemicarbazonato)copper(ii) complex with an appended stilbene functional group binds to amyloid-beta plaques that are associated with Alzheimers disease. The complex has the potential to be of use as a copper-64 radiopharmaceutical to assist in the diagnosis of Alzheimers disease by positron emission tomography.


Journal of Medicinal Chemistry | 2009

Sustained activation of glial cell epidermal growth factor receptor by bis(thiosemicarbazonato) metal complexes is associated with inhibition of protein tyrosine phosphatase activity.

Katherine A. Price; Aphrodite Caragounis; Brett M. Paterson; Gulay Filiz; Irene Volitakis; Colin L. Masters; Kevin J. Barnham; Paul S. Donnelly; Peter J. Crouch; Anthony R. White

Bis(thiosemicarbazonato) metal complexes (M(II)(btsc)) have demonstrated potential neuroprotective activity in cell and animal models of Alzheimers disease (AD). Metal complexes can activate the epidermal growth factor receptor (EGFR), leading to inhibition of amyloid peptide accumulation in neuronal cells. As glial cells also have an important role in modulating neuronal health and survival in AD, we examined the effect of M(II)(btsc) on activity of EGFR in an astroglial cell line. Our findings reveal potent activation of glial EGFR by glyoxalbis(N(4)-methylthiosemicarbazonato)Cu(II)] (Cu(II)(gtsm)). Activation of EGFR by Cu(II)(gtsm) involved phosphorylation of multiple tyrosine residues and was mediated by a cognate ligand-independent process involving M(II)(btsc) inhibition of protein tyrosine phosphatase (PTP) activity. EGFR activation resulted in release of growth factors and cytokines with potential modulatory effects on neuronal function. These studies provide an important insight into the mechanism of action of a neuroprotective M(II)(btsc) and provide a basis for future studies into this novel approach to AD therapy.

Collaboration


Dive into the Brett M. Paterson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony R. White

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

SinChun Lim

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Volitakis

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Roselt

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge