Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett R. Goldsmith is active.

Publication


Featured researches published by Brett R. Goldsmith.


Applied Physics Letters | 2010

DNA-Decorated Graphene Chemical Sensors

A. T. Johnson; Ye Lu; Brett R. Goldsmith; Nicholas J. Kybert

Graphene is a two-dimensional material with exceptional electronic properties and enormous potential for applications. Graphene’s promise as a chemical sensor material has been noted but there has been little work on practical chemical sensing using graphene, and in particular, how chemical functionalization may be used to sensitize graphene to chemical vapors. Here we show one route towards improving the ability of graphene to work as a chemical sensor by using single stranded DNA as a sensitizing agent. The resulting devices show fast response times, complete and rapid recovery to baseline at room temperature, and discrimination between several similar vapor analytes.


ACS Nano | 2011

BIOMIMETIC CHEMICAL SENSORS USING NANOELECTRONIC READOUT OF OLFACTORY RECEPTORS

Brett R. Goldsmith; Joseph J. Mitala; Jesusa Josue; Ana H. Castro; Mitchell B. Lerner; Timothy H. Bayburt; Samuel M. Khamis; Ryan A. Jones; Joseph G. Brand; Stephen G. Sligar; Charles W. Luetje; Alan Gelperin; Paul A. Rhodes; Bohdana M. Discher; A. T. Charlie Johnson

We have designed and implemented a practical nanoelectronic interface to G-protein coupled receptors (GPCRs), a large family of membrane proteins whose roles in the detection of molecules outside eukaryotic cells make them important pharmaceutical targets. Specifically, we have coupled olfactory receptor proteins (ORs) with carbon nanotube transistors. The resulting devices transduce signals associated with odorant binding to ORs in the gas phase under ambient conditions and show responses that are in excellent agreement with results from established assays for OR-ligand binding. The work represents significant progress on a path toward a bioelectronic nose that can be directly compared to biological olfactory systems as well as a general method for the study of GPCR function in multiple domains using electronic readout.


ACS Nano | 2012

Hybrids of a Genetically Engineered Antibody and a Carbon Nanotube Transistor for Detection of Prostate Cancer Biomarkers

Mitchell B. Lerner; Jimson W. D’Souza; Tatiana Pazina; Jennifer Dailey; Brett R. Goldsmith; Matthew K. Robinson; A. T. Charlie Johnson

We developed a novel detection method for osteopontin (OPN), a new biomarker for prostate cancer, by attaching a genetically engineered single-chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube field-effect transistor (NT-FET). Chemical functionalization using diazonium salts is used to covalently attach scFv to NT-FETs, as confirmed by atomic force microscopy, while preserving the activity of the biological binding site for OPN. Electron transport measurements indicate that functionalized NT-FET may be used to detect the binding of OPN to the complementary scFv protein. A concentration-dependent increase in the source-drain current is observed in the regime of clinical significance, with a detection limit of approximately 30 fM. The scFv-NT hybrid devices exhibit selectivity for OPN over other control proteins. These devices respond to the presence of OPN in a background of concentrated bovine serum albumin, without loss of signal. On the basis of these observations, the detection mechanism is attributed to changes in scattering at scFv protein-occupied defect sites on the carbon nanotube sidewall. The functionalization procedure described here is expected to be generalizable to any antibody containing an accessible amine group and to result in biosensors appropriate for detection of corresponding complementary proteins at fM concentrations.


Small | 2010

High-on/off-ratio graphene nanoconstriction field-effect transistor.

Ye Lu; Brett R. Goldsmith; Douglas R. Strachan; Jong Hsien Lim; Zhengtang Luo; A. T. Charlie Johnson

A method is reported to pattern monolayer graphene nanoconstriction field-effect transistors (NCFETs) with critical dimensions below 10 nm. NCFET fabrication is enabled by the use of feedback-controlled electromigration (FCE) to form a constriction in a gold etch mask that is first patterned using conventional lithographic techniques. The use of FCE allows the etch mask to be patterned on size scales below the limit of conventional nanolithography. The opening of a confinement-induced energy gap is observed as the NCFET width is reduced, as evidenced by a sharp increase in the NCFET on/off ratio. The on/off ratios obtained with this procedure can be larger than 1000 at room temperature for the narrowest devices; this is the first report of such large room-temperature on/off ratios for patterned graphene FETs.


Journal of Chromatography B | 2013

Volatile biomarkers from human melanoma cells.

Jae Kwak; Michelle Gallagher; Mehmet Hakan Ozdener; Charles J. Wysocki; Brett R. Goldsmith; Amaka Isamah; Adam Faranda; Steven Fakharzadeh; Meenhard Herlyn; A. T. Charlie Johnson; George Preti

Dogs can identify, by olfaction, melanoma on the skin of patients or melanoma samples hidden on healthy subjects, suggesting that volatile organic compounds (VOCs) from melanoma differ from those of normal skin. Studies employing gas chromatography-mass spectrometry (GC-MS) and gas sensors reported that melanoma-related VOCs differed from VOCs from normal skin sources. However, the identities of the VOCs that discriminate melanoma from normal skin were either unknown or likely derived from exogenous sources. We employed solid-phase micro-extraction, GC-MS and single-stranded DNA-coated nanotube (DNACNT) sensors to examine VOCs from melanoma and normal melanocytes. GC-MS revealed dozens of VOCs, but further analyses focused on compounds most likely of endogenous origin. Several compounds differed between cancer and normal cells, e.g., isoamyl alcohol was higher in melanoma cells than in normal melanocytes but isovaleric acid was lower in melanoma cells. These two compounds share the same precursor, viz., leucine. Melanoma cells produce dimethyldi- and trisulfide, compounds not detected in VOCs from normal melanocytes. Furthermore, analyses of the total volatile metabolome from both melanoma cells and normal melanocytes by DNACNT sensors, coupled with the GC-MS results, demonstrate clear differences between these cell systems. Consequently, monitoring of melanoma VOCs has potential as a useful screening methodology.


Journal of Breath Research | 2014

Detecting cancer by breath volatile organic compound analysis: a review of array-based sensors

Nuria Queralto; Anders Berliner; Brett R. Goldsmith; Raymond Anthony Martino; Paul A. Rhodes; Sung H. Lim

Cancer diagnosis is typically delayed to the late stages of disease due to the asymptomatic nature of cancer in its early stages. Cancer screening offers the promise of early cancer detection, but most conventional diagnostic methods are invasive and remain ineffective at early detection. Breath analysis is, however, non-invasive and has the potential to detect cancer at an earlier stage by analyzing volatile biomarkers in exhaled breath. This paper summarizes breath sampling techniques and recent developments of various array-based sensor technologies for breath analysis. Significant advancements were made by a number of different research groups in the development of nanomaterial-based sensor arrays, and the ability to accurately distinguish cancer patients from healthy controls based on the volatile organic compounds (VOCs) in exhaled breath has been demonstrated. Optical sensors based on colorimetric sensor array technology are also discussed, where preliminary clinical studies suggest that metabolic VOC profiles could be used to accurately diagnose various forms of lung cancer. Recent studies have demonstrated the potential of using metabolic VOCs for cancer detection, but further standardization and validation is needed before breath analysis can be widely adopted as a clinically useful tool.


Biosensors and Bioelectronics | 2013

Detecting Lyme disease using antibody-functionalized single-walled carbon nanotube transistors.

Mitchell B. Lerner; Jennifer Dailey; Brett R. Goldsmith; Dustin Brisson; A. T. Charlie Johnson

We examined the potential of antibody-functionalized single-walled carbon nanotube (SWNT) field-effect transistors (FETs) to use as a fast and accurate sensor for a Lyme disease antigen. Biosensors were fabricated on oxidized silicon wafers using chemical vapor deposition grown carbon nanotubes that were functionalized using diazonium salts. Attachment of Borrelia burgdorferi (Lyme) flagellar antibodies to the nanotubes was verified by atomic force microscopy and electronic measurements. A reproducible shift in the turn-off voltage of the semiconducting SWNT FETs was seen upon incubation with B. burgdorferi flagellar antigen, indicative of the nanotube FET being locally gated by the residues of flagellar protein bound to the antibody. This sensor effectively detected antigen in buffer at concentrations as low as 1 ng/ml, and the response varied strongly over a concentration range coinciding with levels of clinical interest. Generalizable binding chemistry gives this biosensing platform the potential to be expanded to monitor other relevant antigens, enabling a multiple vector sensor for Lyme disease. The speed and sensitivity of this biosensor make it an ideal candidate for development as a medical diagnostic test.


Biosensors and Bioelectronics | 2018

Novel graphene-based biosensor for early detection of Zika virus infection

Savannah Afsahi; Mitchell B. Lerner; Jason Goldstein; Joo Yeon Lee; Xiaoling Tang; Dennis A. Bagarozzi; Deng Pan; Lauren Locascio; Amy Walker; Francie Barron; Brett R. Goldsmith

We have developed a cost-effective and portable graphene-enabled biosensor to detect Zika virus with a highly specific immobilized monoclonal antibody. Field Effect Biosensing (FEB) with monoclonal antibodies covalently linked to graphene enables real-time, quantitative detection of native Zika viral (ZIKV) antigens. The percent change in capacitance in response to doses of antigen (ZIKV NS1) coincides with levels of clinical significance with detection of antigen in buffer at concentrations as low as 450pM. Potential diagnostic applications were demonstrated by measuring Zika antigen in a simulated human serum. Selectivity was validated using Japanese Encephalitis NS1, a homologous and potentially cross-reactive viral antigen. Further, the graphene platform can simultaneously provide the advanced quantitative data of nonclinical biophysical kinetics tools, making it adaptable to both clinical research and possible diagnostic applications. The speed, sensitivity, and selectivity of this first-of-its-kind graphene-enabled Zika biosensor make it an ideal candidate for development as a medical diagnostic test.


AIP Advances | 2011

A carbon nanotube immunosensor for Salmonella

Mitchell B. Lerner; Brett R. Goldsmith; Ronald McMillon; Jennifer Dailey; Shreekumar Pillai; Shree Ram Singh; A. T. Charlie Johnson

Antibody-functionalized carbon nanotube devices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotube transistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (<1000 cfu/ml). In contrast, the carrier mobility is affected comparably by Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml).


ChemPhysChem | 2008

Mechanism‐Guided Improvements to the Single Molecule Oxidation of Carbon Nanotube Sidewalls

John G. Coroneus; Brett R. Goldsmith; Jorge A. Lamboy; Alexander Kane; Philip G. Collins; Gregory A. Weiss

Real-time monitoring of carbon nanotube conductance during electrochemical and chemical etching reveals the electronic signatures of individual bond alteration events on the nanotube sidewall. Tracking the conductance of multiple single-molecule experiments through different synthetic protocols supports putative mechanisms for sidewall derivatization. Insights gained from these mechanistic observations imply the formation of sidewall carboxylates, which are useful as handles for bioconjugation. We describe an electronic state required for efficacious chemical treatment. Such real-time monitoring can improve carboxylate yields to 45 % or more. The experiments illustrate the power of molecular nanocircuits to uncover and direct the mechanisms of chemical reactions.

Collaboration


Dive into the Brett R. Goldsmith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Kane

University of California

View shared research outputs
Top Co-Authors

Avatar

Ye Lu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Deng Pan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhengtang Luo

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge