Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett T. McClintock is active.

Publication


Featured researches published by Brett T. McClintock.


Ecology | 2011

Improving occupancy estimation when two types of observational error occur: non-detection and species misidentification

David A. W. Miller; James D. Nichols; Brett T. McClintock; Evan H. Campbell Grant; Larissa L. Bailey; Linda A. Weir

Efforts to draw inferences about species occurrence frequently account for false negatives, the common situation when individuals of a species are not detected even when a site is occupied. However, recent studies suggest the need to also deal with false positives, which occur when species are misidentified so that a species is recorded as detected when a site is unoccupied. Bias in estimators of occupancy, colonization, and extinction can be severe when false positives occur. Accordingly, we propose models that simultaneously account for both types of error. Our approach can be used to improve estimates of occupancy for study designs where a subset of detections is of a type or method for which false positives can be assumed to not occur. We illustrate properties of the estimators with simulations and data for three species of frogs. We show that models that account for possible misidentification have greater support (lower AIC for two species) and can yield substantially different occupancy estimates than those that do not. When the potential for misidentification exists, researchers should consider analytical techniques that can account for this source of error, such as those presented here.


Ecological Monographs | 2012

A general discrete-time modeling framework for animal movement using multistate random walks

Brett T. McClintock; Ruth King; Len Thomas; Jason Matthiopoulos; Bernie J. McConnell; Juan M. Morales

Recent developments in animal tracking technology have permitted the collection of detailed data on the movement paths of individuals from many species. However, analysis methods for these data have not developed at a similar pace, largely due to a lack of suitable candidate models, coupled with the technical difficulties of fitting such models to data. To facilitate a general modeling framework, we propose that complex movement paths can be conceived as a series of movement strategies among which animals transition as they are affected by changes in their internal and external environment. We synthesize previously existing and novel methodologies to develop a general suite of mechanistic models based on biased and correlated random walks that allow different behavioral states for directed (e.g., migration), exploratory (e.g., dispersal), area-restricted (e.g., foraging), and other types of movement. Using this “toolbox” of nested model components, multistate movement models may be custom-built for a wide variety of species and applications. As a unified state-space modeling framework, it allows the simultaneous investigation of numerous hypotheses about animal movement from imperfectly observed data, including time allocations to different movement behavior states, transitions between states, the use of memory or navigation, and strengths of attraction (or repulsion) to specific locations. The inclusion of covariate information permits further investigation of specific hypotheses related to factors driving different types of movement behavior. Using reversible-jump Markov chain Monte Carlo methods to facilitate Bayesian model selection and multi-model inference, we apply the proposed methodology to real data by adapting it to the natural history of the grey seal (Halichoerus grypus) in the North Sea. Although previous grey seal studies tended to focus on correlated movements, we found overwhelming evidence that bias toward haul-out or foraging locations better explained seal movement than did simple or correlated random walks. Posterior model probabilities also provided evidence that seals transition among directed, area-restricted, and exploratory movements associated with haul-out, foraging, and other behaviors. With this intuitive framework for modeling and interpreting animal movement, we believe that the development and application of custom-made movement models will become more accessible to ecologists and non-statisticians.


Ecology Letters | 2010

Seeking a Second Opinion: Uncertainty in Disease Ecology

Brett T. McClintock; James D. Nichols; Larissa L. Bailey; Darryl I. MacKenzie; William L. Kendall; Alan B. Franklin

Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals, populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the uncertainty associated with these state assignments remains largely ignored or unaccounted for. We demonstrate how recent developments incorporating observation error through repeated sampling extend quite naturally to hierarchical spatial models of disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain of avian influenza virus in migratory waterfowl and a pathogenic fungus recently implicated in the global loss of amphibian biodiversity are used as motivating examples. Both show that relatively simple modifications to study designs can greatly improve our understanding of complex spatio-temporal disease dynamics by rigorously accounting for uncertainty at each level of the hierarchy.


Biometrics | 2009

Estimating Abundance Using Mark–Resight When Sampling Is with Replacement or the Number of Marked Individuals Is Unknown

Brett T. McClintock; Gary C. White; Michael F. Antolin; Daniel W. Tripp

Although mark-resight methods can often be a less expensive and less invasive means for estimating abundance in long-term population monitoring programs, two major limitations of the estimators are that they typically require sampling without replacement and/or the number of marked individuals available for resighting to be known exactly. These requirements can often be difficult to achieve. Here we address these limitations by introducing the Poisson log and zero-truncated Poisson log-normal mixed effects models (PNE and ZPNE, respectively). The generalized framework of the models allow the efficient use of covariates in modeling resighting rate and individual heterogeneity parameters, information-theoretic model selection and multimodel inference, and the incorporation of individually unidentified marks. Both models may be implemented using standard statistical computing software, but they have also been added to the mark-recapture freeware package Program MARK. We demonstrate the use and advantages of (Z)PNE using black-tailed prairie dog data recently collected in Colorado. We also investigate the expected relative performance of the models in simulation experiments. Compared to other available estimators, we generally found (Z)PNE to be more precise with little or no loss in confidence interval coverage. With the recent introduction of the logit-normal mixed effects model and (Z)PNE, a more flexible and efficient framework for mark-resight abundance estimation is now available for the sampling conditions most commonly encountered in these studies.


Ecology | 2010

Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections.

Brett T. McClintock; Larissa L. Bailey; Kenneth H. Pollock; Theodore R. Simons

The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive detections and sufficient incorporation of explanatory variables for the false negative detection process. These assumptions are likely reasonable in many circumstances, but there is mounting evidence that false positive errors and detection probability heterogeneity may be much more prevalent in studies relying on auditory cues for species detection (e.g., songbird or calling amphibian surveys). We used field survey data from a simulated calling anuran system of known occupancy state to investigate the biases induced by these errors in dynamic models of species occurrence. Despite the participation of expert observers in simplified field conditions, both false positive errors and site detection probability heterogeneity were extensive for most species in the survey. We found that even low levels of false positive errors, constituting as little as 1% of all detections, can cause severe overestimation of site occupancy, colonization, and local extinction probabilities. Further, unmodeled detection probability heterogeneity induced substantial underestimation of occupancy and overestimation of colonization and local extinction probabilities. Completely spurious relationships between species occurrence and explanatory variables were also found. Such misleading inferences would likely have deleterious implications for conservation and management programs. We contend that all forms of observation error, including false positive errors and heterogeneous detection probabilities, must be incorporated into the estimation framework to facilitate reliable inferences about occupancy and its associated vital rate parameters.


Ecology | 2013

Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets

Brett T. McClintock; Deborah Jill Fraser Russell; Jason Matthiopoulos; Ruth King

Recent technological advances have permitted the collection of detailed animal location and ancillary biotelemetry data that facilitate inference about animal movement and associated behaviors. However, these rich sources of individual information, location, and biotelemetry data, are typically analyzed independently, with population-level inferences remaining largely post hoc. We describe a hierarchical modeling approach, which is able to integrate location and ancillary biotelemetry (e.g., physiological or accelerometer) data from many individuals. We can thus obtain robust estimates of (1) population-level movement parameters and (2) activity budgets for a set of behaviors among which animals transition as they respond to changes in their internal and external environment. Measurement error and missing data are easily accommodated using a state-space formulation of the proposed hierarchical model. Using Bayesian analysis methods, we demonstrate our modeling approach with location and dive activity data from 17 harbor seals (Phoca vitulina) in the United Kingdom. Based jointly on movement and diving activity, we identified three distinct movement behavior states: resting, foraging, and transit, and estimated population-level activity budgets to these three states. Because harbor seals are known to dive for both foraging and transit (but not usually for resting), we compared these results to a similar population- level analysis utilizing only location data. We found that a large proportion of time steps were mischaracterized when behavior states were inferred from horizontal trajectory alone, with 33% of time steps exhibiting a majority of dive activity assigned to the resting state. Only 1% of these time steps were assigned to resting when inferred from both trajectory and dive activity data using our integrated modeling approach. There is mounting evidence of the potential perils of inferring animal behavior based on trajectory alone, but there fortunately now exist many flexible analytical techniques for extracting more out of the increasing wealth of information afforded by recent advances in biologging technology.


Journal of Wildlife Management | 2010

Experimental Investigation of Observation Error in Anuran Call Surveys

Brett T. McClintock; Larissa L. Bailey; Kenneth H. Pollock; Theodore R. Simons

Abstract Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presence–absence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5% of all positive detections, with individual observers exhibiting false-positive rates between 0.5% and 14%. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys.


Ecology | 2013

A spatial mark–resight model augmented with telemetry data

Rahel Sollmann; Beth Gardner; Arielle Waldstein Parsons; Jessica J. Stocking; Brett T. McClintock; Theodore R. Simons; Kenneth H. Pollock; Allan F. O'Connell

Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark--resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad hoc approaches. We developed a spatial mark--resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows <100% individual identification of marked individuals. We implemented the model in a Bayesian framework, using a custom-made Metropolis-within-Gibbs Markov chain Monte Carlo algorithm. As an example, we applied this model to a mark--resight study of raccoons (Procyon lotor) on South Core Banks, a barrier island in Cape Lookout National Seashore, North Carolina, USA. We estimated a population of 186.71 +/- 14.81 individuals, which translated to a density of 8.29 +/- 0.66 individuals/km2 (mean +/- SD). The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.


Ecological Applications | 2012

Experimental investigation of false positive errors in auditory species occurrence surveys

David A. W. Miller; Linda A. Weir; Brett T. McClintock; Evan H. Campbell Grant; Larissa L. Bailey; Theodore R. Simons

False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, who recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors, and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI:--46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%;--3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.


Ecology | 2009

A less field-intensive robust design for estimating demographic parameters with Mark-resight data

Brett T. McClintock; Gary C. White

The robust design has become popular among animal ecologists as a means for estimating population abundance and related demographic parameters with mark-recapture data. However, two drawbacks of traditional mark-recapture are financial cost and repeated disturbance to animals. Mark-resight methodology may in many circumstances be a less expensive and less invasive alternative to mark-recapture, but the models developed to date for these data have overwhelmingly concentrated only on the estimation of abundance. Here we introduce a mark-resight model analogous to that used in mark-recapture for the simultaneous estimation of abundance, apparent survival, and transition probabilities between observable and unobservable states. The model may be implemented using standard statistical computing software, but it has also been incorporated into the freeware package Program MARK. We illustrate the use of our model with mainland New Zealand Robin (Petroica australis) data collected to ascertain whether this methodology may be a reliable alternative for monitoring endangered populations of a closely related species inhabiting the Chatham Islands. We found this method to be a viable alternative to traditional mark-recapture when cost or disturbance to species is of particular concern in long-term population monitoring programs.

Collaboration


Dive into the Brett T. McClintock's collaboration.

Top Co-Authors

Avatar

Devin S. Johnson

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan M. Morales

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Mevin B. Hooten

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Gary C. White

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Peter L. Boveng

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodore R. Simons

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Erin E. Moreland

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Paul B. Conn

National Marine Fisheries Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge