Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett T. Webb is active.

Publication


Featured researches published by Brett T. Webb.


Biology of Reproduction | 2013

Endocrine Delivery of Interferon Tau Protects the Corpus Luteum from Prostaglandin F2 Alpha-Induced Luteolysis in Ewes

Alfredo Q. Antoniazzi; Brett T. Webb; Jared J. Romero; Ryan L. Ashley; Natalia P. Smirnova; Luiz E. Henkes; Rebecca C. Bott; João Francisco Coelho de Oliveira; G. D. Niswender; Fuller W. Bazer; Thomas R. Hansen

ABSTRACT Paracrine release of ovine interferon tau (oIFNT) from the conceptus alters release of endometrial prostaglandin F2 alpha (PGF) and prevents luteolysis. Endocrine release of oIFNT into the uterine vein occurs by Day 15 of pregnancy and may impart resistance of the corpus luteum (CL) to PGF. It was hypothesized that infusion of recombinant oIFNT (roIFNT) into the uterine or jugular veins on Day 10 of the estrous cycle would protect the CL against exogenous PGF-induced luteolysis. Osmotic pumps were surgically installed in 24 ewes to deliver bovine serum albumin (BSA; n = 12) or roIFNT (200 μg/day; n = 12) for 24 h into the uterine vein. Six ewes in each treatment group received a single injection of PGF (4 mg/58 kg body weight) 12 h after pump installation. In a second experiment, BSA or roIFNT was delivered at 20 or 200 μg/day into the uterine vein or 200 μg/day into the jugular vein for 72 h in 30 ewes. One half of these ewes received an injection of PGF 24 h after pump installation. Concentrations of progesterone in serum declined in BSA-treated ewes injected with PGF, but were sustained in all ewes infused with 20 μg/day of roIFNT into the uterine vein and 200 μg of roIFNT into the jugular vein followed 24 h later with injection of PGF. All concentrations of roIFNT and modes of delivery (uterine or jugular vein) increased luteal concentrations of IFN-stimulated gene (i.e., ISG15) mRNA. Infusion of 200 μg of IFNT over 24 h induced greater mRNA concentrations for cell survival genes, such as BCL2-like 1 (BCL2L1 or Bcl-xL), serine/threonine kinase (AKT), and X-linked inhibitor of apoptosis (XIAP) and decreased prostaglandin F receptor (PTGFR) mRNA concentrations, when compared to controls. It is concluded that endocrine delivery of roIFNT, regardless of route (uterine or jugular vein), effectively protects CL from the luteolytic actions of PGF by mechanisms that involve ISGs and stabilization of cell survival genes.


Physiological Genomics | 2013

Pregnancy-associated genes contribute to antiluteolytic mechanisms in ovine corpus luteum

Jared J. Romero; Alfredo Q. Antoniazzi; Natalia P. Smirnova; Brett T. Webb; Fang Yu; John S. Davis; Thomas R. Hansen

The hypothesis that ovine luteal gene expression differs due to pregnancy status and day of estrous cycle was tested. RNA was isolated from corpora lutea (CL) on days 12 and 14 of the estrous cycle (NP) or pregnancy (P) and analyzed with the Affymetrix bovine microarray. RNA also was isolated from luteal cells on day 10 of estrous cycle that were cultured for 24 h with luteolytic hormones (OXT and PGF) and secretory products of the conceptus (IFNT and PGE2). Differential gene expression (>1.5-fold, P < 0.05) was confirmed using semiquantitative real-time PCR. Serum progesterone concentrations decreased from day 12 to day 15 in NP ewes (P < 0.05) reflecting luteolysis and remained >1.7 ng/ml in P ewes reflecting rescue of the CL. Early luteolysis (days 12-14) was associated with differential expression of 683 genes in the CL, including upregulation of SERPINE1 and THBS1. Pregnancy on day 12 (55 genes) and 14 (734 genes) also was associated with differential expression of genes in the CL, many of which were ISGs (i.e., ISG15, MX1) that were induced when culturing luteal cells with IFNT, but not PGE2. Finally, many genes, such as PTX3, IL6, VEGF, and LHR, were stabilized during pregnancy and downregulated during the estrous cycle and in response to culture of luteal cells with luteolytic hormones. In conclusion, pregnancy circumvents luteolytic pathways and activates or stabilizes genes associated with interferon, chemokine, cell adhesion, cytoskeletal, and angiogenic pathways in the CL.


Biology of Reproduction | 2015

Temporal Release, Paracrine and Endocrine Actions of Ovine Conceptus-Derived Interferon-Tau During Early Pregnancy

Jared J. Romero; Alfredo Q. Antoniazzi; Terry M. Nett; Ryan L. Ashley; Brett T. Webb; Natalia P. Smirnova; Rebecca C. Bott; Jason E. Bruemmer; Fuller W. Bazer; Russell V. Anthony; Thomas R. Hansen

ABSTRACT The antiviral activity of interferon (IFN) increases in uterine vein serum (UVS) during early pregnancy in sheep. This antiviral activity in UVS collected on Day 15 of pregnancy is blocked by anti-IFN-tau (anti-IFNT) antibodies. Conceptus-derived IFNT was hypothesized to induce IFN-stimulated gene (ISG) expression in endometrium and extrauterine tissues during pregnancy. To test this hypothesis, blood was collected from ewes on Days 12–16 of the estrous cycle or pregnancy. Serum progesterone was >1.7 ng/ml in pregnant (P) and nonpregnant (NP) ewes until Day 13, then declined to <0.6 ng/ml by Day 15 in NP ewes. A validated IFNT radioimmunoassay detected IFNT in uterine flushings (UFs) on Days 13–16 and in UVS on Days 15–16 of pregnancy. IFNT detection in UF correlated with paracrine induction of ISGs in the endometrium and occurred prior to the inhibition of estrogen receptor 1 and oxytocin receptor expression in uterine epithelia on Day 14 of pregnancy. Induction of ISG mRNAs in corpus luteum (CL) and liver tissue occurred by Day 14 and in peripheral blood mononuclear cells by Day 15 in P ewes. Expression of mRNAs for IFN signal transducers and ISGs were greater in the CL of P than that of NP ewes on Day 14. It is concluded that: 1) paracrine actions of IFNT coincide with detection of IFNT in UF; 2) endocrine action of IFNT ensues through induction of ISGs in peripheral tissues; and 3) IFNT can be detected in UVS, but not until Days 15–16 of pregnancy, which may be limited by the sensitivity of the IFNT radioimmunoassay.


Virus Research | 2012

Development of fetal and placental innate immune responses during establishment of persistent infection with bovine viral diarrhea virus

Natalia P. Smirnova; Brett T. Webb; Helle Bielefeldt-Ohmann; Hana Van Campen; Alfredo Q. Antoniazzi; Susan E. Morarie; Thomas R. Hansen

Transplacental viral infections are dependent upon complex interactions between feto-placental and maternal immune responses and the stage of fetal development at which the infection occurs. Bovine viral diarrhea virus (BVDV) has the ability to cross the placenta and infect the fetus. Infection early in gestation with non-cytopathic (ncp) BVDV leads to persistent infection. Establishment of fetal persistent infection results in life-long viremia, virus-specific immunotolerance, and may have detrimental developmental consequences. We have previously shown that heifers infected experimentally with ncp BVDV type 2 on d. 75 of gestation had transient robust up-regulation of the type I interferon (IFN) stimulated genes (ISGs) 3-15 days after viral inoculation. Blood from persistently infected (PI) fetuses, collected 115 days post maternal infection, demonstrated moderate chronic up-regulation of ISGs. This infection model was used to delineate timing of the development of innate immune responses in the fetus and placenta during establishment of persistent infection. It was hypothesized that: (i) chronic stimulation of innate immune responses occurs following infection of the fetus and (ii) placental production of the type I IFN contributes to up-regulation of ISGs in PI fetuses. PI fetuses, generated by intranasal inoculation of pregnant heifers with ncp BVDV, and control fetuses from uninfected heifers, were collected via Cesarean sections on d. 82, 89, 97, 192, and 245 of gestation. Fetal viremia was confirmed starting on d. 89. Significant up-regulation of mRNA encoding cytosolic dsRNA sensors -RIG-I and MDA5 - was detected on d. 82-192. Detection of viral dsRNA by cytosolic sensors leads to the stimulation of ISGs, which was reflected in significant up-regulation of ISG15 mRNA in fetal blood on d. 89, 97, and 192. No difference in IFN-α and IFN-β mRNA concentration was found in fetal blood or caruncular tissue, while a significant increase in both IFN-α and IFN-β mRNA was seen in cotyledons from PI fetuses on d. 192. It is concluded that fetuses respond to early gestational ncp BVDV infection by induction of the type I IFN pathway, resulting in chronic up-regulation of ISGs. Cotyledonary tissue contributes to up-regulation of ISGs by increased production of IFNs. The innate immune response might partially curtail viral replication in PI fetuses, but is not able to eliminate the virus in the absence of a virus-specific adaptive immune response.


International Journal of Experimental Pathology | 2012

Neuro-invasion by a ‘Trojan Horse’ strategy and vasculopathy during intrauterine flavivirus infection

Helle Bielefeldt-Ohmann; Natalia P. Smirnova; Airn-Elizabeth Tolnay; Brett T. Webb; Alfredo Q. Antoniazzi; Hana Van Campen; Thomas R. Hansen

The central nervous system (CNS) is a major target of several important human and animal viral pathogens causing congenital infections. However, despite the importance of neuropathological outcomes, for humans in particular, the pathogenesis, including mode of neuro‐invasion, remains unresolved for most congenital virus infections. Using a natural model of congenital infection with an RNA virus, bovine viral diarrhoea virus in pregnant cattle, we sought to delineate the timing and mode of virus neuro‐invasion of and spread within the brain of foetuses following experimental respiratory tract infection of the dams at day 75 of pregnancy, a time of maximal risk of tissue pathology without foetal death. Virus antigen was first detected in the foetal brains 14 days postinfection of dams and was initially restricted to amoeboid microglial cells in the periventricular germinal layer. The appearance of these cells was preceded by or concurrent with vasculopathy in the same region. While the affected microvessels were negative for virus antigen, they expressed high levels of the type I interferon‐stimulated protein ISG15 and eventually disappeared in parallel with the appearance of microcavitary lesions. Subsequently, the virus spread to neurons and other glial cells. Our findings suggest that the virus enters the CNS via infected microglial precursors, the amoeboid microglial cells, in a ‘Trojan horse’ mode of invasion and that the microcavitary lesions are associated with loss of periventricular microvasculature, perhaps as a consequence of high, unrestricted induction of interferon‐regulated proteins.


Veterinary Pathology | 2012

Bovine Viral Diarrhea Virus Cyclically Impairs Long Bone Trabecular Modeling in Experimental Persistently Infected Fetuses

Brett T. Webb; R. W. Norrdin; Natalia P. Smirnova; H. Van Campen; C.M. Weiner; Alfredo Q. Antoniazzi; Helle Bielefeldt-Ohmann; Thomas R. Hansen

Persistent infection (PI) with bovine viral diarrhea virus (BVDV) has been associated with osteopetrosis and other long bone lesions, most commonly characterized as transverse zones of unmodeled metaphyseal trabeculae in fetuses and calves. This study was undertaken to characterize the morphogenesis of fetal long bone lesions. Forty-six BVDV-naïve pregnant Hereford heifers of approximately 18 months of age were inoculated with noncytopathic BVDV type 2 containing media or media alone on day 75 of gestation to produce PI and control fetuses, respectively, which were collected via cesarean section on days 82, 89, 97, 192, and 245 of gestation. Radiographic and histomorphometric abnormalities were first detected on day 192, at which age PI fetal long bone metaphyses contained focal densities (4 of 7 fetuses) and multiple alternating transverse radiodense bands (3 of 7 fetuses). Day 245 fetuses were similarly affected. Histomorphometric analysis of proximal tibial metaphyses from day 192 fetuses revealed transverse zones with increased calcified cartilage core (Cg.V/BV, %) and trabecular bone (BV/TV, %) volumes in regions corresponding to radiodense bands (P < .05). Numbers of tartrate resistant acid phosphatase positive osteoclasts (N.Oc/BS, #/mm2) and bone perimeter occupied (Oc.S/BS, %) were both decreased (P < .05). Mineralizing surface (MS/BS, %), a measure of tissue level bone formation activity, was reduced in PI fetuses (P < .05). It is concluded that PI with BVDV induces cyclic abnormal trabecular modeling, which is secondary to reduced numbers of osteoclasts. The factors responsible for these temporal changes are unknown but may be related to the time required for osteoclast differentiation from precursor cells.


Research in Veterinary Science | 2012

Interferon stimulated genes, CXCR4 and immune cell responses in peripheral blood mononuclear cells infected with bovine viral diarrhea virus

C.M. Weiner; Natalia P. Smirnova; Brett T. Webb; H. Van Campen; Thomas R. Hansen

Non-cytopathic bovine viral diarrhea virus (ncpBVDV) induces immune responses mediated by chemokines and interferon (IFN) stimulated genes (ISGs). Cultured bovine peripheral blood mononuclear cells (PBMC) from ncpBVDV-naïve cattle were used herein to demonstrate that BVDV infection modulates chemokine receptor 4 (CXCR4), CXCL12, IFN-I, ISGs and selected immune cell marker (CD4, CD8, CD14) mRNAs, and that these acute responses to viral infection are reflected in PBMC cultured with serum from heifers carrying fetuses persistently infected (PI) with ncpBVDV. Infection of PBMC with ncpBVDV increased IFN-β, ISG15, RIG-I, CXCR4, CXCL12, and CD8 mRNA concentrations after 32 h. Culture of PBMC with uterine vein serum from acutely infected heifers, inoculated with ncpBVDV during early gestation to generate PI fetuses, also increased the concentration of CXCR4, RIG-I and ISG15 mRNAs. In vitro PBMC treatment with ncpBVDV or uterine vein serum from acutely infected pregnant heifers activates chemokine, ISG and immune cell responses.


Veterinary Microbiology | 2017

Ten years of PCV2 vaccines and vaccination: Is eradication a possibility?

Zahra Afghah; Brett T. Webb; Xiang-Jin Meng; Sheela Ramamoorthy

More than two decades after its emergence, porcine circovirus type 2 (PCV2) remains an economically important swine pathogen. Commercial vaccines which were first introduced to the U.S in 2006, have been highly effective in reducing clinical signs and improving production. Recent studies have indicated a declining level of PCV2 prevalence and viremia in the field. However, reports on the emergence of new viral variants have also continued to increase. This article reviews topics of current interest in the field of PCV2 vaccines; including the comparative efficacy of the available commercial products, efficacy of current vaccines against new and emerging strains, findings on the differences between immunity in natural infection versus vaccination, limitations of current experimental models for PCV2 vaccine studies, and new developments in novel experimental vaccines. The discussion is framed in the context of attempts for the possible eradication of PCV2 in the future.


Animal Health Research Reviews | 2015

Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus.

Thomas R. Hansen; Natalia P. Smirnova; Brett T. Webb; Helle Bielefeldt-Ohmann; Randy E. Sacco; Hana Van Campen

Abstract Infection of pregnant cows with noncytopathic (ncp) bovine viral diarrhea virus (BVDV) induces rapid innate and adaptive immune responses, resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent infection with ncpBVDV in the fetus has been attributed to the inability to mount an immune response before 90–150 days of gestational age. The result is ‘immune tolerance’, persistent viral replication and shedding of ncpBVDV. In contrast, we describe the chronic upregulation of fetal Type I interferon (IFN) pathway genes and the induction of IFN-γ pathways in fetuses of cows infected on day 75 of gestation. Persistently infected (PI) fetal IFN-γ concentrations also increased at day 97 at the peak of fetal viremia and IFN-γ mRNA was significantly elevated in fetal thymus, liver and spleen 14–22 days post maternal inoculation. PI fetuses respond to ncpBVDV infection through induction of Type I IFN and IFN-γ activated genes leading to a reduction in ncpBVDV titer. We hypothesize that fetal infection with BVDV persists because of impaired induction of IFN-γ in the face of activated Type I IFN responses. Clarification of the mechanisms involved in the IFN-associated pathways during BVDV fetal infection may lead to better detection methods, antiviral compounds and selection of genetically resistant breeding animals.


Virus Research | 2014

Induction of interferon-gamma and downstream pathways during establishment of fetal persistent infection with bovine viral diarrhea virus

Natalia P. Smirnova; Brett T. Webb; Jodi L. McGill; Robert G. Schaut; Helle Bielefeldt-Ohmann; Hana Van Campen; Randy E. Sacco; Thomas R. Hansen

Development of transplacental infection depends on the ability of the virus to cross the placenta and replicate within the fetus while counteracting maternal and fetal immune responses. Unfortunately, little is known about this complex process. Non-cytopathic (ncp) strains of bovine viral diarrhea virus (BVDV), a pestivirus in the Flaviviridae family, cause persistent infection in early gestational fetuses (<150 days; persistently infected, PI), but are cleared by immunocompetent animals and late gestational fetuses (>150 days; transiently infected, TI). Evasion of innate immune response and development of immunotolerance to ncp BVDV have been suggested as possible mechanisms for the establishment of the persistent infection. Previously we have observed a robust temporal induction of interferon (IFN) type I (innate immune response) and upregulation of IFN stimulated genes (ISGs) in BVDV TI fetuses. Modest chronic upregulation of ISGs in PI fetuses and calves reflects a stimulated innate immune response during persistent BVDV infection. We hypothesized that establishing persistent fetal BVDV infection is also accompanied by the induction of IFN-gamma (IFN-γ). The aims of the present study were to determine IFN-γ concentration in blood and amniotic fluid from control, TI and PI fetuses during BVDV infection and analyze induction of the IFN-γ downstream pathways in fetal lymphoid tissues. Two experiments with in vivo BVDV infections were completed. In Experiment 1, pregnant heifers were infected with ncp BVDV type 2 on day 75 or 175 of gestation or kept naïve to generate PI, TI and control fetuses, respectively. Fetuses were collected by Cesarean section on day 190. In Experiment 2, fetuses were collected on days 82, 89, 97, 192 and 245 following infection of pregnant heifers on day 75 of gestation. The results were consistent with the hypothesis that ncp BVDV infection induces IFN-γ secretion during acute infection in both TI and PI fetuses and that lymphoid tissues such as spleen, liver and thymus, serve both as possible sources of IFN-γ and target organs for its effects. Notably, induction of IFN-γ coincides with a decrease in BVDV RNA concentrations in PI fetal blood and tissues. This is the first report indicating the possible presence of an adaptive immune response in persistent BVDV infections, which may be contributing to the observed reduction of viremia in PI fetuses.

Collaboration


Dive into the Brett T. Webb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jared J. Romero

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hana Van Campen

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

G. D. Niswender

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Rebecca C. Bott

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Ryan L. Ashley

New Mexico State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge