Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett Tully is active.

Publication


Featured researches published by Brett Tully.


IEEE Transactions on Biomedical Engineering | 2009

Coupling Poroelasticity and CFD for Cerebrospinal Fluid Hydrodynamics

Brett Tully; Yiannis Ventikos

This research uses a novel coupling of poroelastic theory and computational fluid dynamics to investigate acute hydrocephalus resulting from stenosis of the cerebral aqueduct. By coupling poroelastic theory with a multidimensional simulation of the cerebral aqueduct we are able to investigate, for the first time, the impact of physically relevant stenosis patterns on ventricular enlargement, accounting for the nonintuitive long time history responses of the ventricular system. Preliminary findings demonstrate clearly the importance that the fluidic-poroelastic coupling plays: ventricular enlargement is significantly smaller with local stenosis patterns and almost all of the observable pressure drop occurs across the stenosis. Short timescale effects [O(heartbeat)] are explored and their contribution to the long timescales interrogated.


Springer Netherlands | 2013

Multicompartmental Poroelasticity as a Platform for the Integrative Modeling of Water Transport in the Brain

John C. Vardakis; Brett Tully; Yiannis Ventikos

This work proposes the implementation of a multiple-network poroelastic theory (MPET) model for the purpose of investigating in detail the transport of water within the cerebral environment. The key advantage of using the MPET representation is that it accounts for fluid transport between CSF, brain parenchyma and cerebral blood. A further novelty in the model is the amalgamation of anatomically accurate Choroid Plexus regions, with their individual feeding arteries. This model is used to demonstrate and discuss the impact of aqueductal stenosis on the cerebral ventricles, along with possible future treatment techniques.


PLOS ONE | 2013

Exploring the Efficacy of Endoscopic Ventriculostomy for Hydrocephalus Treatment via a Multicompartmental Poroelastic Model of CSF Transport: A Computational Perspective

John C. Vardakis; Brett Tully; Yiannis Ventikos

This study proposes the implementation of a Multiple-Network Poroelastic Theory (MPET) model coupled with finite-volume computational fluid dynamics for the purpose of studying, in detail, the effects of obstructing CSF transport within an anatomically accurate cerebral environment. The MPET representation allows the investigation of fluid transport between CSF, brain parenchyma and cerebral blood, in an integral and comprehensive manner. A key novelty in the model is the amalgamation of anatomically accurate choroid plexuses with their feeding arteries and a simple relationship relaxing the constraint of a unique permeability for the CSF compartment. This was done in order to account for the Aquaporin-4-mediated swelling characteristics. The aim of this varying permeability compartment was to bring to light a feedback mechanism that could counteract the effects of ventricular dilation and subsequent elevations of CSF pressure through the efflux of excess CSF into the blood system. This model is used to demonstrate the impact of aqueductal stenosis and fourth ventricle outlet obstruction (FVOO). The implications of treating such a clinical condition with the aid of endoscopic third (ETV) and endoscopic fourth (EFV) ventriculostomy are considered. We observed peak CSF velocities in the aqueduct of the order of 15.6 cm/s in the healthy case, 45.4 cm/s and 72.8 cm/s for the mild and severe cases respectively. The application of ETV reduced the aqueductal velocity to levels around 16–17 cm/s. Ventricular displacement, CSF pressure, wall shear stress (WSS) and pressure difference between lateral and fourth ventricles (ΔP) increased with applied stenosis, and subsequently dropped to nominal levels with the application of ETV. The greatest reversal of the effects of atresia come by opting for ETV rather than the more complicated procedure of EFV.


Journal of Biomechanics | 2016

A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis

Dean Chou; John C. Vardakis; Liwei Guo; Brett Tully; Yiannis Ventikos

This study proposes the implementation of a fully dynamic four-network poroelastic model which is underpinned by multiple-network poroelastic theory (MPET), in order to account for the effects of varying stages of aqueductal stenosis and atresia during acute hydrocephalus. The innovation of the fully dynamic MPET implementation is that it avoids the commonplace assumption of quasi-steady behaviour; instead, it incorporates all transient terms in the casting of the equations and in the numerical solution of the resulting discrete system. It was observed that the application of mild stenosis allows for a constant value of amalgamated ventricular displacement in under 2.4h, whereas the application of a severe stenosis delays this settlement to approximately 10h. A completely blocked aqueduct does not show a clear sign of reaching a steady ventricular displacement after 24h. The increasing ventricular pressure (complemented with ventriculomegaly) during severe stenosis is causing the trans-parenchymal tissue region to respond, and this coping mechanism is most attenuated at the regions closest to the skull and the ventricles. After 9h, the parenchymal tissue shows to be coping well with the additional pressure burden, since both ventriculomegaly and ventricular CSF (cerebrospinal fluid) pressure show small increases between 9 and 24h. Localised swelling in the periventricular region could also be observed through CSF fluid content, whilst dilation results showed stretch and compression of cortical tissue adjacent to the ventricles and skull.


Medical Engineering & Physics | 2016

Investigating cerebral oedema using poroelasticity

John C. Vardakis; Dean Chou; Brett Tully; Chang C. Hung; Tsong H. Lee; Po-Hsiang Tsui; Yiannis Ventikos

Cerebral oedema can be classified as the tangible swelling produced by expansion of the interstitial fluid volume. Hydrocephalus can be succinctly described as the abnormal accumulation of cerebrospinal fluid (CSF) within the brain which ultimately leads to oedema within specific sites of parenchymal tissue. Using hydrocephalus as a test bed, one is able to account for the necessary mechanisms involved in the interaction between oedema formation and cerebral fluid production, transport and drainage. The current state of knowledge about integrative cerebral dynamics and transport phenomena indicates that poroelastic theory may provide a suitable framework to better understand various diseases. In this work, Multiple-Network Poroelastic Theory (MPET) is used to develop a novel spatio-temporal model of fluid regulation and tissue displacement within the various scales of the cerebral environment. The model is applied through two formats, a one-dimensional finite difference - Computational Fluid Dynamics (CFD) coupling framework, as well as a two-dimensional Finite Element Method (FEM) formulation. These are used to investigate the role of endoscopic fourth ventriculostomy in alleviating oedema formation due to fourth ventricle outlet obstruction (1D coupled model) in addition to observing the capability of the FEM template in capturing important characteristics allied to oedema formation, like for instance in the periventricular region (2D model).


Interface Focus | 2018

Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer's disease

Liwei Guo; John C. Vardakis; Toni Lassila; Micaela Mitolo; Nishant Ravikumar; Dean Chou; Matthias Lange; Ali Sarrami-Foroushani; Brett Tully; Zeike A. Taylor; Susheel Varma; Annalena Venneri; Alejandro F. Frangi; Yiannis Ventikos

There is emerging evidence suggesting that Alzheimers disease is a vascular disorder, caused by impaired cerebral perfusion, which may be promoted by cardiovascular risk factors that are strongly influenced by lifestyle. In order to develop an understanding of the exact nature of such a hypothesis, a biomechanical understanding of the influence of lifestyle factors is pursued. An extended poroelastic model of perfused parenchymal tissue coupled with separate workflows concerning subject-specific meshes, permeability tensor maps and cerebral blood flow variability is used. The subject-specific datasets used in the modelling of this paper were collected as part of prospective data collection. Two cases were simulated involving male, non-smokers (control and mild cognitive impairment (MCI) case) during two states of activity (high and low). Results showed a marginally reduced clearance of cerebrospinal fluid (CSF)/interstitial fluid (ISF), elevated parenchymal tissue displacement and CSF/ISF accumulation and drainage in the MCI case. The peak perfusion remained at 8 mm s−1 between the two cases.


Physical Review E | 2016

Modeling asymmetric cavity collapse with plasma equations of state

Brett Tully; Nicholas Hawker; Yiannis Ventikos

We explore the effect that equation of state (EOS) thermodynamics has on shock-driven cavity-collapse processes. We account for full, multidimensional, unsteady hydrodynamics and incorporate a range of relevant EOSs (polytropic, QEOS-type, and SESAME). In doing so, we show that simplified analytic EOSs, like ideal gas, capture certain critical parameters of the collapse such as velocity of the main transverse jet and pressure at jet strike, while also providing a good representation of overall trends. However, more sophisticated EOSs yield different and more relevant estimates of temperature and density, especially for higher incident shock strengths. We model incident shocks ranging from 0.1 to 1000 GPa, the latter being of interest in investigating the warm dense matter regime for which experimental and theoretical EOS data are difficult to obtain. At certain shock strengths, there is a factor of two difference in predicted density between QEOS-type and SESAME EOS, indicating cavity collapse as an experimental method for exploring EOS in this range.


Journal of the Acoustical Society of America | 2013

Experimental characterisation of light emission during shock-driven cavity collapse

Phillip A. Anderson; Nicholas Hawker; Matthew Betney; Brett Tully; Yiannis Ventikos; Ronald A. Roy

The authors describe experimental work examining the collapse of a cavity by a strong shockwave. A millimeter size cavity is cast in Phytagel, which is then impacted by a metallic projectile accelerated by a compressed gas gun, reaching velocities up to 500 m/s. The impact generates a strong shockwave that propagates into the gel at greater than sonic velocity. Schlieren images are presented that illustrate both this process and the subsequent cavity collapse at a sub-microsecond timescale. As the shockwave reaches the cavity, it is shown to cause a rapid asymmetric collapse process characterized by the formation of a high-speed transverse jet. The pressure of the shockwave is found to be 100+ MPa as measured via a custom-built fiber-optic probe hydrophone. Previous work examining shock-driven cavity collapse observed luminescence, postulated to be due to the high-speed impact of the transverse jet on the far bubble wall; this experimental observation is replicated. Further, the light emission is characte...


international conference of the ieee engineering in medicine and biology society | 2010

Is Normal Pressure Hydrocephalus more than a mechanical disruption to CSF flow

Brett Tully; James V. Byrne; Yiannis Ventikos

This work proposes a new theoretical framework for the water transport in the cerebral environment. The approach is based on Multiple-Network Poroelastic Theory (MPET) and is a natural extension of poroelasticity, a well reported technique applied to cerebrospinal fluid (CSF) transport. MPET accounts for the transport of CSF and blood simultaneously, as they permeate and deform the cerebral tissue. To demonstrate the strength of this approach, MPET is applied to one of the most paradoxical and non-intuitive cerebral pathologies, Normal Pressure Hydrocephalus (NPH). It is shown, for the first time, that clinically relevant ventricular deformations can be observed in the case of totally unobstructed, patient-specific aqueducts. Cerebral diseases are recognised as pivotal in healthcare; they relate to a whole host of unmet clinical needs. We are convinced that basic understanding of fluid transport, as provided by a validated MPET model, is the most promising way to address these needs meaningfully, in a clinical setting.


Physics of Fluids | 2017

Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone

Phillip A. Anderson; Matthew Betney; Hugo Doyle; Brett Tully; Yiannis Ventikos; Nicholas Hawker; Ronald A. Roy

The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ∼10% at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequat...

Collaboration


Dive into the Brett Tully's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liwei Guo

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. S. Foster

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge