Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian A. Fox is active.

Publication


Featured researches published by Brian A. Fox.


Nature Immunology | 2003

IL-28, IL-29 and their class II cytokine receptor IL-28R

Paul O. Sheppard; Wayne R. Kindsvogel; Wenfeng Xu; Katherine E. Henderson; Stacy Schlutsmeyer; Theodore E. Whitmore; Rolf E. Kuestner; Ursula Garrigues; Carl W. Birks; Jenny Roraback; Craig D. Ostrander; Dennis L. Dong; Jinu Shin; Scott R. Presnell; Brian A. Fox; Betty A. Haldeman; Emily Cooper; David W. Taft; Teresa Gilbert; Francis J. Grant; Monica Tackett; William Krivan; Gary L. McKnight; Chris Clegg; Don Foster; Kevin M. Klucher

Cytokines play a critical role in modulating the innate and adaptive immune systems. Here, we have identified from the human genomic sequence a family of three cytokines, designated interleukin 28A (IL-28A), IL-28B and IL-29, that are distantly related to type I interferons (IFNs) and the IL-10 family. We found that like type I IFNs, IL-28 and IL-29 were induced by viral infection and showed antiviral activity. However, IL-28 and IL-29 interacted with a heterodimeric class II cytokine receptor that consisted of IL-10 receptor β (IL-10Rβ) and an orphan class II receptor chain, designated IL-28Rα. This newly described cytokine family may serve as an alternative to type I IFNs in providing immunity to viral infection.


Journal of Experimental Medicine | 2009

The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans

Cameron S. Brandt; Myriam Baratin; Eugene C. Yi; Jacob Kennedy; Zeren Gao; Brian A. Fox; Betty A. Haldeman; Craig D. Ostrander; Tomonori Kaifu; Christian Chabannon; Alessandro Moretta; Robert West; Wenfeng Xu; Eric Vivier; Steven D. Levin

Cancer development is often associated with the lack of specific and efficient recognition of tumor cells by the immune system. Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumors. We report the identification of a tumor cell surface molecule that binds NKp30, a human receptor which triggers antitumor NK cell cytotoxicity and cytokine secretion. This previously unannotated gene belongs to the B7 family and, hence, was designated B7-H6. B7-H6 triggers NKp30-mediated activation of human NK cells. B7-H6 was not detected in normal human tissues but was expressed on human tumor cells, emphasizing that the expression of stress-induced self-molecules associated with cell transformation serves as a mode of cell recognition in innate immunity.


European Journal of Immunology | 2011

Vstm3 is a member of the CD28 family and an important modulator of T-cell function

Steven D. Levin; David W. Taft; Cameron S. Brandt; Christoph Bucher; Edward D. Howard; Eric M. Chadwick; Janet V. Johnston; Angela K. Hammond; Kristen Bontadelli; Daniel Ardourel; LuAnn Hebb; Anitra Wolf; Thomas R. Bukowski; Mark W. Rixon; Joseph L. Kuijper; Craig D. Ostrander; James W. West; Janine Bilsborough; Brian A. Fox; Zeren Gao; Wenfeng Xu; Fred Ramsdell; Bruce R. Blazar; Katherine E. Lewis

Members of the CD28 family play important roles in regulating T‐cell functions and share a common gene structure profile. We have identified VSTM3 as a protein whose gene structure matches that of the other CD28 family members. This protein (also known as TIGIT and WUCAM) has been previously shown to affect immune responses and is expressed on NK cells, activated and memory T cells, and Tregs. The nectin‐family proteins CD155 and CD112 serve as counter‐structures for VSTM3, and CD155 and CD112 also bind to the activating receptor CD226 on T cells and NK cells. Hence, this group of interacting proteins forms a network of molecules similar to the well‐characterized CD28–CTLA‐4–CD80–CD86 network. In the same way that soluble CTLA‐4 can be used to block T‐cell responses, we show that soluble Vstm3 attenuates T‐cell responses in vitro and in vivo. Moreover, animals deficient in Vstm3 are more sensitive to autoimmune challenges indicating that this new member of the CD28 family is an important regulator of T‐cell responses.


PLOS ONE | 2009

The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family.

Brian A. Fox; Paul O. Sheppard; Patrick J. O'Hara

BACKGROUND Type-I interferons, type-II interferons, and the IL-10 family are helical cytokines with similar three-dimensional folds. However, their homologous relationship is difficult to detect on the basis of sequence alone. We have previously described the discovery of the human type-III interferons (IFN lambda-1, -2, -3 or IL-29, IL-28A, IL-28B), which required a combination of manual and computational techniques applied to predicted protein sequences. PRINCIPAL FINDINGS Here we describe how the use of gene structure analysis and comparative genomics enabled a more extensive understanding of these genes early in the discovery process. More recently, additional mammalian genome sequences have shown that there are between one and potentially nine copies of interferon lambda genes in each genome, and that several species have single exon versions of the interferon lambda gene. SIGNIFICANCE The variable number of single exon type-I interferons in mammals, along with recently identified genes in zebrafish homologous to interferons allows a story of interferon evolution to be proposed. This model suggests that the gene duplications and single exon retrotransposons of mammalian type-III interferons are positively selected for within a genome. These characteristics are also shared with the fish interferons and could be responsible for the generation of the IL10 family and also the single exon type-I interferons.


Protein Engineering Design & Selection | 2010

Generation of a high-affinity Fcγ receptor by Ig-domain swapping between human CD64A and CD16A

Jeff L. Ellsworth; Nels Hamacher; Brandon Harder; Mark Maurer; Thomas R. Bukowski; Megan Lantry; Claire Noriega; Mark W. Rixon; Brian A. Fox; Ken Lewis; Brent Meengs; Emily Rollins; Karlien Greeff; Jeffrey D. Meyer; Carl W. Birks

A recombinant soluble version of the human high-affinity receptor for IgG, rh-FcgammaRIA or CD64A, was expressed in mammalian cells and purified from their conditioned media. As assessed by circular dichroism, size exclusion chromatography and dynamic light scattering, incubation of rh-FcgammaRIA at 37 degrees C resulted in time-dependent formation of soluble aggregates caused by protein unfolding and loss of native structure. Aggregate formation was irreversible, temperature-dependent and was independent of rh-FcgammaRIA concentration. Aggregated rh-FcgammaRIA lost its ability to inhibit immune complex precipitation and failed to bind to IgG-Sepharose. Addition of human IgG1 to rh-FcgammaRIA prior to incubation at 37 degrees C blocked the formation of rh-FcgammaRIA aggregates. Production of soluble monomeric rh-FcgammaRIA was limited by aggregate formation during cell culture. Substitution of the membrane distal D1 Ig domain of FcgammaRIA with the D1 Ig domain of FcgammaRIIIA or CD16A resulted in a chimeric receptor, FcgammaR3A1A, with enhanced temperature stability. Relative to native rh-FcgammaRIA, FcgammaR3A1A exhibited less aggregation in Chinese hamster ovary cell-conditioned media or when purified receptor was incubated for up to 24 h at 37 degrees C. Both receptors bound to immobilized human IgG1 with high affinity and were equipotent at blockade of immune complex-mediated cytokine production from cultured mast cells. Equivalent dose-dependent reductions in edema and neutrophil infiltration in the cutaneous Arthus reaction in mice were noted for rh-FcgammaRIA and FcgammaR3A1A. These data demonstrate that the D1 Ig domains of FcgammaRIA and FcgammaRIIIA are functionally interchangeable and further suggest that the chimeric receptor FcgammaR3A1A is an effective inhibitor of type III hypersensitivity in mice.


Archive | 2008

Single chain fc, methods of making and methods of treatment

Margaret D. Moore; Marshall D. Snavely; Brian A. Fox; Gabriela H. Hoyos


Archive | 2001

Interferon-like protein ZCYTO21

Paul O. Sheppard; Scott R. Presnell; Brian A. Fox; Teresa Gilbert; Betty A. Haldeman; Francis J. Grant


Archive | 2006

Cytokine protein family

Paul O. Sheppard; Brian A. Fox; Kevin M. Klucher; David W. Taft; Wayne R. Kindsvogel


Nature Reviews Drug Discovery | 2004

Cytokine–receptor pairing: accelerating discovery of cytokine function

Don Foster; Julia Parrish-Novak; Brian A. Fox; Wenfeng Xu


Archive | 2000

Kunitz domain polypeptide zkun10

Paul O. Sheppard; Brian A. Fox

Collaboration


Dive into the Brian A. Fox's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott R. Presnell

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge