Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian A. Logue is active.

Publication


Featured researches published by Brian A. Logue.


Critical Reviews in Analytical Chemistry | 2010

The Analysis of Cyanide and its Breakdown Products in Biological Samples

Brian A. Logue; Diane M. Hinkens; Steven I. Baskin; Gary A. Rockwood

Cyanide is a toxic chemical that may be introduced into living organisms as a result of natural processes and/or anthropogenic uses (legal or illicit). Exposure to cyanide can be verified by analysis of cyanide or one of its breakdown products from biological samples. This verification may be important for medical, law-enforcement, military, forensic, research, or veterinary purposes. This review will discuss current bioanalytical techniques used for the verification of cyanide exposure, identify common problems associated with the analysis of cyanide and its biological breakdown products, and briefly address the metabolism and toxicokinetics of cyanide and its breakdown products in biological systems.


Analytical Chemistry | 2014

Development of a Fluorescence-Based Sensor for Rapid Diagnosis of Cyanide Exposure

Randy Jackson; Robert P. Oda; Raj K. Bhandari; Sari Mahon; Matthew Brenner; Gary A. Rockwood; Brian A. Logue

Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating, and synthetic fiber production. The “heavy” use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Because the onset of cyanide toxicity is fast, a rapid, sensitive, and accurate method for the diagnosis of cyanide exposure is necessary. Therefore, a field sensor for the diagnosis of cyanide exposure was developed based on the reaction of naphthalene dialdehyde, taurine, and cyanide, yielding a fluorescent β-isoindole. An integrated cyanide capture “apparatus”, consisting of sample and cyanide capture chambers, allowed rapid separation of cyanide from blood samples. Rabbit whole blood was added to the sample chamber, acidified, and the HCN gas evolved was actively transferred through a stainless steel channel to the capture chamber containing a basic solution of naphthalene dialdehyde (NDA) and taurine. The overall analysis time (including the addition of the sample) was <3 min, the linear range was 3.13–200 μM, and the limit of detection was 0.78 μM. None of the potential interferents investigated (NaHS, NH4OH, NaSCN, and human serum albumin) produced a signal that could be interpreted as a false positive or a false negative for cyanide exposure. Most importantly, the sensor was 100% accurate in diagnosing cyanide poisoning for acutely exposed rabbits.


Analytica Chimica Acta | 2010

Determination of cyanide exposure by gas chromatography–mass spectrometry analysis of cyanide-exposed plasma proteins

Stephanie L. Youso; Gary A. Rockwood; John P. Lee; Brian A. Logue

Exposure to cyanide can occur in a variety of ways, including exposure to smoke from cigarettes or fires, accidental exposure during industrial processes, and exposure from the use of cyanide as a poison or chemical warfare agent. Confirmation of cyanide exposure is difficult because, in vivo, cyanide quickly breaks down by a number of pathways, including the formation of both free and protein-bound thiocyanate. A simple method was developed to confirm cyanide exposure by extraction of protein-bound thiocyanate moieties from cyanide-exposed plasma proteins. Thiocyanate was successfully extracted and subsequently derivatized with pentafluorobenzyl bromide for GC-MS analysis. Thiocyanate levels as low as 2.5 ng mL(-1) and cyanide exposure levels as low as 175 μg kg(-1) were detected. Samples analyzed from smokers and non-smokers using this method showed significantly different levels of protein-bound thiocyanate (p<0.01). These results demonstrate the potential of this method to positively confirm chronic cyanide exposure through the analysis of protein-bound cyanide in human plasma.


Toxicology Mechanisms and Methods | 2009

The analysis of 2-amino-2-thiazoline-4-carboxylic acid in the plasma of smokers and non-smokers

Brian A. Logue; Wendy K. Maserek; Gary A. Rockwood; Michael W. Keebaugh; Steven I. Baskin

ATCA (2-amino-2-thiazoline-4-carboxylic acid) is a promising marker to assess cyanide exposure because of several advantages of ATCA analysis over direct determination of cyanide and alternative cyanide biomarkers (i.e. stability in biological matrices, consistent recovery, and relatively small endogenous concentrations). Concentrations of ATCA in the plasma of smoking and non-smoking human volunteers were analyzed using gas-chromatography mass-spectrometry to establish the feasibility of using ATCA as a marker for cyanide exposure. The levels of ATCA in plasma of smoking volunteers, 17.2 ng/ml, were found to be significantly (p < 0.001) higher than that of non-smoking volunteers, 11.8 ng/ml. Comparison of ATCA concentrations of smokers relative to non-smokers in both urine and plasma yielded relatively similar results. The concentration ratio of ATCA for smokers versus non-smokers in plasma and urine was compared to similar literature studies of cyanide and thiocyanate, and correlations are discussed. This study supports previous evidence that ATCA can be used to determine past cyanide exposure and indicates that further studies should be pursued to validate the use of ATCA as a marker of cyanide exposure.


Biomarkers | 2012

Comparison of cyanide exposure markers in the biofluids of smokers and non-smokers

Chakravarthy V. Vinnakota; Naga S. Peetha; Mitch G. Perrizo; David G. Ferris; Robert P. Oda; Gary A. Rockwood; Brian A. Logue

Cyanide is highly toxic and is present in many foods, combustion products (e.g. cigarette smoke), industrial processes, and has been used as a terrorist weapon. In this study, cyanide and its major metabolites, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid (ATCA), were analyzed from various human biofluids of smokers (low-level chronic cyanide exposure group) and non-smokers to gain insight into the relationship of these biomarkers to cyanide exposure. The concentrations of each biomarker tested were elevated for smokers in each biofluid. Significant differences (p < 0.05) were found for thiocyanate in plasma and urine, and ATCA showed significant differences in plasma and saliva. Additionally, biomarker concentration ratios, correlations between markers of cyanide exposure, and other statistical methods were performed to better understand the relationship between cyanide and its metabolites. Of the markers studied, the results indicate plasma ATCA, in particular, showed excellent promise as a biomarker for chronic low-level cyanide exposure.


Nanotoxicology | 2007

Enzyme-based intravascular defense against organophosphorus neurotoxins: Synergism of dendritic-enzyme complexes with 2-PAM and atropine

Ilona Petrikovics; Melinda E. Wales; J. C. Jaszberenyi; Marianna Budai; Steven I. Baskin; Mária Szilasi; Brian A. Logue; Patricia Chapela; James R. Wild

Novel, enzyme-complexed, nano-delivery systems have been developed to antagonize the lethal effects of organophosphorus (OP) molecules such as diisopropylfluorophosphate and paraoxon. Polymeric nanocapsules can be used to deliver metabolizing enzymes to the circulation, often increasing the enzymes efficacy by extending their circulatory life and, in some cases, enhancing their specific activity. The bacterial enzymes organophosphorus hydrolase (OPH) and organophosphorus anhydrolase (OPAA) were encapsulated within a nanocapsule, polyoxazoline-based dendritic polymer carrier and employed in combination with the OP antagonists pralidoxime (2-PAM) and atropine. The effective doses for OPH and OPAA, respectively, were 500–550 and 1500–1650 units/kg mice; the size of the entire complex is approximately 200 nm in diameter. These studies compare the efficacy of the two enzymes as prophylactic systems encapsulated within the dendritic polymer. When used in combination with 2-PAM and atropine, the dendritic encapsuled OPAA provided a 25×LD50 protection against DFP intoxication, while the similarly constructed OPH complex showed a more dramatic protection (780×LD50) against paraoxon intoxication in Balb/c mice. The studies demonstrate a synergistic enhancement of the antagonist, since the antidotal protection of 2-PAM+atropine against DFP and paraoxon is approximately 8 and 60×LD50, respectively.


Journal of Analytical Toxicology | 2012

The Analysis of Protein-Bound Thiocyanate in Plasma of Smokers and Non-Smokers as a Marker of Cyanide Exposure

Stephanie L. Youso; Gary A. Rockwood; Brian A. Logue

When cyanide is introduced into the body, it quickly transforms through a variety of chemical reactions, normally involving sulfur donors, to form more stable chemical species. Depending on the nature of the sulfur donor, cyanide may be transformed into free thiocyanate, the major metabolite of cyanide transformation, 2-amino-2-thiazoline-4-carboxylic acid or protein-bound thiocyanate (PB-SCN) adducts. Because protein adducts are generally stable in biological systems, it has been suggested that PB-SCN may have distinct advantages as a marker of cyanide exposure. In this study, plasma was analyzed from 25 smokers (chronic low-level cyanide exposure group) and 25 non-smokers for PB-SCN. The amount of PB-SCN found in the plasma of smokers, 1.35 µM, was significantly elevated (p < 0.0001) when compared to non-smokers, 0.66 µM. Differences in sub-groups of smokers and non-smokers were also evaluated. The results of this study indicate the effectiveness of analyzing PB-SCN in determining instances of chronic cyanide exposure with possible extension to confirmation of acute cyanide exposure.


Toxicology Mechanisms and Methods | 2006

Spectrophotometric Analysis of the Cyanide Metabolite 2-Aminothiazoline-4-Carboxylic Acid (ATCA).

Steven I. Baskin; Ilona Petrikovics; Gennady E. Platoff; Gary A. Rockwood; Brian A. Logue

Methods of directly evaluating cyanide levels are limited by the volatility of cyanide and by the difficulty of establishing steady-state cyanide levels with time. We investigated the measurement of a stable, toxic metabolite, 2-aminothiazoline-4-carboxylic acid (ATCA), in an attempt to circumvent the challenge of directly determining cyanide concentrations in aqueous media. This study was focused on the spectrophotometric ATCA determination in the presence of cyanide, thiocyanate (SCN−), cysteine, rhodanese, thiosulfate, and other sulfur donors. The method involves a thiazolidine ring opening in the presence of p-(hydroxy-mercuri)-benzoate, followed by the reaction with diphenylthiocarbazone (dithizone). The product is spectrophotometrically analyzed at 625 nm in carbon tetrachloride. The calibration curve was linear with a regression line of Y = 0.0022x (R2 = 0.9971). Interference of cyanide antidotes with the method was determined. Cyanide, thiosulfate, butanethiosulfonate (BTS), and rhodanese did not appreciably interfere with the analysis, but SCN− and cysteine significantly shifted the standard curve. This sensitive spectrophotometric method has shown promise as a substitute for the measurement of the less stable cyanide.


Journal of Analytical Toxicology | 2014

Cyanide Toxicokinetics: The Behavior of Cyanide, Thiocyanate and 2-Amino-2-Thiazoline-4-Carboxylic Acid in Multiple Animal Models

Raj K. Bhandari; Robert P. Oda; Ilona Petrikovics; David E. Thompson; Matthew Brenner; Sari Mahon; Vikhyat S. Bebarta; Gary A. Rockwood; Brian A. Logue

Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct analysis of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN(-)) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers following cyanide exposure, a toxicokinetics study was performed in three animal models: (i) rats (250-300 g), (ii) rabbits (3.5-4.2 kg) and (iii) swine (47-54 kg). Cyanide reached a maximum in blood and declined rapidly in each animal model as it was absorbed, distributed, metabolized and eliminated. Thiocyanate concentrations rose more slowly as cyanide was enzymatically converted to SCN(-). Concentrations of ATCA did not rise significantly above the baseline in the rat model, but rose quickly in rabbits (up to a 40-fold increase) and swine (up to a 3-fold increase) and then fell rapidly, generally following the relative behavior of cyanide. Rats were administered cyanide subcutaneously and the apparent half-life (t1/2) was determined to be 1,510 min. Rabbits were administered cyanide intravenously and the t1/2 was determined to be 177 min. Swine were administered cyanide intravenously and the t1/2 was determined to be 26.9 min. The SCN(-) t1/2 in rats was 3,010 min, but was not calculated in rabbits and swine because SCN(-) concentrations did not reach a maximum. The t1/2 of ATCA was 40.7 and 13.9 min in rabbits and swine, respectively, while it could not be determined in rats with confidence. The current study suggests that cyanide exposure may be verified shortly after exposure by determining significantly elevated cyanide and SCN(-) in each animal model and ATCA may be used when the ATCA detoxification pathway is significant.


Journal of Chromatography B | 2012

Plasma persistence of 2-aminothiazoline-4-carboxylic acid in rat system determined by liquid chromatography tandem mass spectrometry

Ilona Petrikovics; Jorn C.C. Yu; David E. Thompson; Prashanth Jayanna; Brian A. Logue; Jessica Nasr; Raj K. Bhandari; Steven I. Baskin; Gary A. Rockwood

2-Aminothiazoline-4-carboxylic acid (ATCA) was intravenously injected to rats in order to investigate its plasma distribution. ATCA was extracted from plasma samples by solid phase extraction (SPE) and molecularly imprinted polymer stir bar sorption extraction (MIP-SBSE). Detection and quantification of ATCA were achieved by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). It was found that the intravenously injected ATCA concentration quickly decreased to half within 2.5h in the rat system. However, after 2.5 h, the concentration of ATCA in plasma stayed constant at least 5 folds above the endogenous ATCA level for more then 48 h. This finding can be used for evaluating ATCAs diagnostic and forensic value as a biomarker for cyanide exposure.

Collaboration


Dive into the Brian A. Logue's collaboration.

Top Co-Authors

Avatar

Gary A. Rockwood

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Ilona Petrikovics

Sam Houston State University

View shared research outputs
Top Co-Authors

Avatar

Erica Manandhar

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Brendan L. Mitchell

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Raj K. Bhandari

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiquan Qiao

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Steven I. Baskin

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Michael W. Stutelberg

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Stephanie L. Youso

South Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge