Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian A. McKittrick is active.

Publication


Featured researches published by Brian A. McKittrick.


Bioorganic & Medicinal Chemistry Letters | 2012

Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor

Jared N. Cumming; Elizabeth M. Smith; Lingyan Wang; Jeffrey Misiaszek; James Durkin; Jianping Pan; Ulrich Iserloh; Yusheng Wu; Zhaoning Zhu; Corey Strickland; Johannes Voigt; Xia Chen; Matthew E. Kennedy; Reshma Kuvelkar; Lynn Hyde; Kathleen Cox; Leonard Favreau; Michael Czarniecki; William J. Greenlee; Brian A. McKittrick; Eric M. Parker; Andrew W. Stamford

From an initial lead 1, a structure-based design approach led to identification of a novel, high-affinity iminohydantoin BACE1 inhibitor that lowers CNS-derived Aβ following oral administration to rats. Herein we report SAR development in the S3 and F subsites of BACE1 for this series, the synthetic approaches employed in this effort, and in vivo data for the optimized compound.


Bioorganic & Medicinal Chemistry Letters | 2010

Iminoheterocycles as γ-secretase modulators

John P. Caldwell; Chad E. Bennett; Troy Mccracken; Robert Mazzola; Thomas Bara; Alexei V. Buevich; Duane A. Burnett; Inhou Chu; Mary Cohen-Williams; Hubert Josein; Lynn Hyde; Julie Lee; Brian A. McKittrick; Lixin Song; Giuseppe Terracina; Johannes Voigt; Lili Zhang; Zhaoning Zhu

The synthesis of a novel series of iminoheterocycles and their structure-activity relationship (SAR) as modulators of gamma-secretase activity will be detailed. Encouraging SAR generated from a monocyclic core led to a structurally unique bicyclic core. Selected compounds exhibit good potency as gamma-secretase modulators, excellent rat pharmacokinetics, and lowering of Abeta42 levels in various in vivo models.


Bioorganic & Medicinal Chemistry Letters | 2012

The discovery of potent, selective, and orally active pyrazoloquinolines as PDE10A inhibitors for the treatment of Schizophrenia.

Ginny D. Ho; Shu-Wei Yang; Jennifer Smotryski; Ana Bercovici; Terry Nechuta; Elizabeth M. Smith; William T. McElroy; Zheng Tan; Deen Tulshian; Brian A. McKittrick; William J. Greenlee; Alan Hruza; Li Xiao; Diane Rindgen; Deborra Mullins; Mario Guzzi; Xiaoping Zhang; Carina J. Bleickardt; Robert Hodgson

High-throughput screening identified a series of pyrazoloquinolines as PDE10A inhibitors. The SAR development led to the discovery of compound 27 as a potent, selective, and orally active PDE10A inhibitor. Compound 27 inhibits MK-801 induced hyperactivity at 3mg/kg with an ED(50) of 4mg/kg and displays a ∼6-fold separation between the ED(50) for inhibition of MK-801 induced hyperactivity and hypolocomotion in rats.


Journal of Medicinal Chemistry | 2016

Structure-Based Design of an Iminoheterocyclic β-Site Amyloid Precursor Protein Cleaving Enzyme (BACE) Inhibitor that Lowers Central Aβ in Nonhuman Primates

Mihirbaran Mandal; Yusheng Wu; Jeffrey Misiaszek; Guoqing Li; Alexei V. Buevich; John P. Caldwell; Xiaoxiang Liu; Robert Mazzola; Peter Orth; Corey Strickland; Johannes Voigt; Hongwu Wang; Zhaoning Zhu; Xia Chen; Michael Grzelak; Lynn Hyde; Reshma Kuvelkar; Presscott T. Leach; Giuseppe Terracina; Lili Zhang; Qi Zhang; Maria S. Michener; Brad Smith; Kathleen Cox; Diane Grotz; Leonard Favreau; Kaushik Mitra; Irina Kazakevich; Brian A. McKittrick; William J. Greenlee

We describe successful efforts to optimize the in vivo profile and address off-target liabilities of a series of BACE1 inhibitors represented by 6 that embodies the recently validated fused pyrrolidine iminopyrimidinone scaffold. Employing structure-based design, truncation of the cyanophenyl group of 6 that binds in the S3 pocket of BACE1 followed by modification of the thienyl group in S1 was pursued. Optimization of the pyrimidine substituent that binds in the S2-S2″ pocket of BACE1 remediated time-dependent CYP3A4 inhibition of earlier analogues in this series and imparted high BACE1 affinity. These efforts resulted in the discovery of difluorophenyl analogue 9 (MBi-4), which robustly lowered CSF and cortex Aβ40 in both rats and cynomolgus monkeys following a single oral dose. Compound 9 represents a unique molecular shape among BACE inhibitors reported to potently lower central Aβ in nonrodent preclinical species.


Bioorganic & Medicinal Chemistry Letters | 2010

T-type calcium channel blockers: spiro-piperidine azetidines and azetidinones-optimization, design and synthesis.

Elizabeth M. Smith; Steve Sorota; Hyunjin M. Kim; Brian A. McKittrick; Terry Nechuta; Chad E. Bennett; Chad E. Knutson; Duane A. Burnett; Jane Kieselgof; Zheng Tan; Diane Rindgen; Terry Bridal; Xiaoping Zhou; Yu-Ping Jia; Zoe Dong; Debbie Mullins; Xiaoping Zhang; Tony Priestley; Craig Correll; Deen Tulshian; Michael Czarniecki; William J. Greenlee

A series of spiro-azetidines and azetidinones has been evaluated as novel blockers of the T-type calcium channel (Ca(V)3.2) which is a new therapeutic target for the potential treatment of both inflammatory and neuropathic pain. Confirmation and optimization of the potency, selectivity and DMPK properties of leads will be described.


Bioorganic & Medicinal Chemistry Letters | 2010

Design and synthesis of tricyclic sulfones as γ-secretase inhibitors with greatly reduced Notch toxicity

Ruo Xu; David Cole; Ted Asberom; Tom Bara; Chad E. Bennett; Duane A. Burnett; John W. Clader; Martin Domalski; William J. Greenlee; Lynn Hyde; Hubert Josien; Hongmei Li; Mark McBriar; Brian A. McKittrick; Andrew T. McPhail; Dmitri Pissarnitski; Li Qiang; Murali Rajagopalan; Thavalakulamgar Sasikumar; Jing Su; Haiqun Tang; Wen-Lian Wu; Lili Zhang; Zhiqiang Zhao

A novel series of tricyclic gamma-secretase inhibitors was designed and synthesized via a conformational analysis of literature compounds. The preliminary results have shown that compounds in this new series have much improved in vitro potency and in vivo profiles. More importantly, they have greatly reduced Notch related toxicity that was associated with previous gamma-secretase inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of a series of potent arylthiadiazole H3 antagonists

Dong Xiao; Anandan Palani; Michael Sofolarides; Ying Huang; Robert Aslanian; Henry M. Vaccaro; Liwu Hong; Brian A. McKittrick; Robert E. West; Shirley M. Williams; Ren-Long Wu; Joyce Hwa; Christopher Sondey; Jean Lachowicz

A series of 2-piperidinopiperidine-5-arylthiadiazoles was synthesized and subjected to a structure-activity relationship (SAR) investigation. The potency of this series was improved to the single digit nanomolar range. The key analogs were shown to be free of P450 issues, and they also maintained good ex vivo activity and brain penetration.


Bioorganic & Medicinal Chemistry Letters | 2010

Structure and activity relationships of tartrate-based TACE inhibitors.

Dansu Li; Janeta Popovici-Muller; David B. Belanger; John P. Caldwell; Chaoyang Dai; Maria David; Vinay Girijavallabhan; Brian J. Lavey; Joe F. Lee; Zhidan Liu; Rob Mazzola; Razia Rizvi; Kristin E. Rosner; Bandarpalle B. Shankar; Jim Spitler; Pauline C. Ting; Henry M. Vaccaro; Wensheng Yu; Guowei Zhou; Zhaoning Zhu; Xiaoda Niu; Jing Sun; Zhuyan Guo; Peter Orth; Shiying Chen; Joseph A. Kozlowski; Daniel Lundell; Vincent Madison; Brian A. McKittrick; John J. Piwinski

The syntheses and structure-activity relationships of the tartrate-based TACE inhibitors are discussed. The optimization of both the prime and non-prime sites led to compounds with picomolar activity. Several analogs demonstrated good rat pharmacokinetics.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of potent iminoheterocycle BACE1 inhibitors.

John P. Caldwell; Robert Mazzola; James Durkin; Joseph Chen; Xia Chen; Leonard Favreau; Matthew E. Kennedy; Reshma Kuvelkar; Julie Lee; Nansie McHugh; Brian A. McKittrick; Peter Orth; Andrew W. Stamford; Corey Strickland; Johannes Voigt; Liyang Wang; Lili Zhang; Qi Zhang; Zhaoning Zhu

The synthesis of a series of iminoheterocycles and their structure-activity relationships (SAR) as inhibitors of the aspartyl protease BACE1 will be detailed. An effort to access the S3 subsite directly from the S1 subsite initially yielded compounds with sub-micromolar potency. A subset of compounds from this effort unexpectedly occupied a different binding site and displayed excellent BACE1 affinities. Select compounds from this subset acutely lowered Aβ40 levels upon subcutaneous and oral administration to rats.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and SAR study of tricyclic sulfones as γ-secretase inhibitors: C-6 and C-8 positions.

Jing Su; Haiqun Tang; Brian A. McKittrick; Ruo Xu; John W. Clader; William J. Greenlee; Lynn Hyde; Lili Zhang

SAR exploration at C-6 and C-8 positions of the tricyclic sulfone series was carried out. Several functional groups were found to be well tolerated at C-6 and C-8 positions. Selective combination of C-6 and C-8 modification resulted in new tricyclic sulfone analogs with efficacy in in vivo mouse Aβ(40) lowering model.

Collaboration


Dive into the Brian A. McKittrick's collaboration.

Researchain Logo
Decentralizing Knowledge