Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian B. Avants is active.

Publication


Featured researches published by Brian B. Avants.


Medical Image Analysis | 2008

Symmetric Diffeomorphic Image Registration with Cross-Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain

Brian B. Avants; Charles L. Epstein; Murray Grossman; James C. Gee

One of the most challenging problems in modern neuroimaging is detailed characterization of neurodegeneration. Quantifying spatial and longitudinal atrophy patterns is an important component of this process. These spatiotemporal signals will aid in discriminating between related diseases, such as frontotemporal dementia (FTD) and Alzheimers disease (AD), which manifest themselves in the same at-risk population. Here, we develop a novel symmetric image normalization method (SyN) for maximizing the cross-correlation within the space of diffeomorphic maps and provide the Euler-Lagrange equations necessary for this optimization. We then turn to a careful evaluation of our method. Our evaluation uses gold standard, human cortical segmentation to contrast SyNs performance with a related elastic method and with the standard ITK implementation of Thirions Demons algorithm. The new method compares favorably with both approaches, in particular when the distance between the template brain and the target brain is large. We then report the correlation of volumes gained by algorithmic cortical labelings of FTD and control subjects with those gained by the manual rater. This comparison shows that, of the three methods tested, SyNs volume measurements are the most strongly correlated with volume measurements gained by expert labeling. This study indicates that SyN, with cross-correlation, is a reliable method for normalizing and making anatomical measurements in volumetric MRI of patients and at-risk elderly individuals.


NeuroImage | 2011

A reproducible evaluation of ANTs similarity metric performance in brain image registration.

Brian B. Avants; Nicholas J. Tustison; Gang Song; Philip A. Cook; Arno Klein; James C. Gee

The United States National Institutes of Health (NIH) commit significant support to open-source data and software resources in order to foment reproducibility in the biomedical imaging sciences. Here, we report and evaluate a recent product of this commitment: Advanced Neuroimaging Tools (ANTs), which is approaching its 2.0 release. The ANTs open source software library consists of a suite of state-of-the-art image registration, segmentation and template building tools for quantitative morphometric analysis. In this work, we use ANTs to quantify, for the first time, the impact of similarity metrics on the affine and deformable components of a template-based normalization study. We detail the ANTs implementation of three similarity metrics: squared intensity difference, a new and faster cross-correlation, and voxel-wise mutual information. We then use two-fold cross-validation to compare their performance on openly available, manually labeled, T1-weighted MRI brain image data of 40 subjects (UCLAs LPBA40 dataset). We report evaluation results on cortical and whole brain labels for both the affine and deformable components of the registration. Results indicate that the best ANTs methods are competitive with existing brain extraction results (Jaccard=0.958) and cortical labeling approaches. Mutual information affine mapping combined with cross-correlation diffeomorphic mapping gave the best cortical labeling results (Jaccard=0.669±0.022). Furthermore, our two-fold cross-validation allows us to quantify the similarity of templates derived from different subgroups. Our open code, data and evaluation scripts set performance benchmark parameters for this state-of-the-art toolkit. This is the first study to use a consistent transformation framework to provide a reproducible evaluation of the isolated effect of the similarity metric on optimal template construction and brain labeling.


IEEE Transactions on Medical Imaging | 2010

N4ITK: Improved N3 Bias Correction

Nicholas J. Tustison; Brian B. Avants; Philip A. Cook; Yuanjie Zheng; Alexander Egan; Paul A. Yushkevich; James C. Gee

A variant of the popular nonparametric nonuniform intensity normalization (N3) algorithm is proposed for bias field correction. Given the superb performance of N3 and its public availability, it has been the subject of several evaluation studies. These studies have demonstrated the importance of certain parameters associated with the B-spline least-squares fitting. We propose the substitution of a recently developed fast and robust B-spline approximation routine and a modified hierarchical optimization scheme for improved bias field correction over the original N3 algorithm. Similar to the N3 algorithm, we also make the source code, testing, and technical documentation of our contribution, which we denote as ¿N4ITK,¿ available to the public through the Insight Toolkit of the National Institutes of Health. Performance assessment is demonstrated using simulated data from the publicly available Brainweb database, hyperpolarized 3He lung image data, and 9.4T postmortem hippocampus data.


IEEE Transactions on Medical Imaging | 2015

The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

Bjoern H. Menze; András Jakab; Stefan Bauer; Jayashree Kalpathy-Cramer; Keyvan Farahani; Justin S. Kirby; Yuliya Burren; Nicole Porz; Johannes Slotboom; Roland Wiest; Levente Lanczi; Elizabeth R. Gerstner; Marc-André Weber; Tal Arbel; Brian B. Avants; Nicholas Ayache; Patricia Buendia; D. Louis Collins; Nicolas Cordier; Jason J. Corso; Antonio Criminisi; Tilak Das; Hervé Delingette; Çağatay Demiralp; Christopher R. Durst; Michel Dojat; Senan Doyle; Joana Festa; Florence Forbes; Ezequiel Geremia

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.


NeuroImage | 2004

Geodesic estimation for large deformation anatomical shape averaging and interpolation

Brian B. Avants; James C. Gee

The goal of this research is to promote variational methods for anatomical averaging that operate within the space of the underlying image registration problem. This approach is effective when using the large deformation viscous framework, where linear averaging is not valid, or in the elastic case. The theory behind this novel atlas building algorithm is similar to the traditional pairwise registration problem, but with single image forces replaced by average forces. These group forces drive an average transport ordinary differential equation allowing one to estimate the geodesic that moves an image toward the mean shape configuration. This model gives large deformation atlases that are optimal with respect to the shape manifold as defined by the data and the image registration assumptions. We use the techniques in the large deformation context here, but they also pertain to small deformation atlas construction. Furthermore, a natural, inherently inverse consistent image registration is gained for free, as is a tool for constant arc length geodesic shape interpolation. The geodesic atlas creation algorithm is quantitatively compared to the Euclidean anatomical average to elucidate the need for optimized atlases. The procedures generate improved average representations of highly variable anatomy from distinct populations.


IEEE Transactions on Medical Imaging | 2011

Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge

K. Murphy; B. van Ginneken; Joseph M. Reinhardt; Sven Kabus; Kai Ding; Xiang Deng; Kunlin Cao; Kaifang Du; Gary E. Christensen; V. Garcia; Tom Vercauteren; Nicholas Ayache; Olivier Commowick; Grégoire Malandain; Ben Glocker; Nikos Paragios; Nassir Navab; V. Gorbunova; Jon Sporring; M. de Bruijne; Xiao Han; Mattias P. Heinrich; Julia A. Schnabel; Mark Jenkinson; Cristian Lorenz; Marc Modat; Jamie R. McClelland; Sebastien Ourselin; S. E. A. Muenzing; Max A. Viergever

EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intra patient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This is compounded by the fact that researchers typically test only on their own data, which varies widely. For this reason, reliable assessment and comparison of different registration algorithms has been virtually impossible in the past. In this work we present the results of the launch phase of EMPIRE10, which comprised the comprehensive evaluation and comparison of 20 individual algorithms from leading academic and industrial research groups. All algorithms are applied to the same set of 30 thoracic CT pairs. Algorithm settings and parameters are chosen by researchers expert in the con figuration of their own method and the evaluation is independent, using the same criteria for all participants. All results are published on the EMPIRE10 website (http://empire10.isi.uu.nl). The challenge remains ongoing and open to new participants. Full results from 24 algorithms have been published at the time of writing. This paper details the organization of the challenge, the data and evaluation methods and the outcome of the initial launch with 20 algorithms. The gain in knowledge and future work are discussed.


The Journal of Neuroscience | 2010

Early Stress Is Associated with Alterations in the Orbitofrontal Cortex: A Tensor-Based Morphometry Investigation of Brain Structure and Behavioral Risk

Jamie L. Hanson; Moo K. Chung; Brian B. Avants; Elizabeth A. Shirtcliff; James C. Gee; Richard J. Davidson; Seth D. Pollak

Individuals who experience early adversity, such as child maltreatment, are at heightened risk for a broad array of social and health difficulties. However, little is known about how this behavioral risk is instantiated in the brain. Here we examine a neurobiological contribution to individual differences in human behavior using methodology appropriate for use with pediatric populations paired with an in-depth measure of social behavior. We show that alterations in the orbitofrontal cortex among individuals who experienced physical abuse are related to social difficulties. These data suggest a biological mechanism linking early social learning to later behavioral outcomes.


Neuroinformatics | 2011

An open source multivariate framework for n-tissue segmentation with evaluation on public data.

Brian B. Avants; Nicholas J. Tustison; Jue Wu; Philip A. Cook; James C. Gee

We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs (http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool.


IEEE Transactions on Medical Imaging | 2007

High-Dimensional Spatial Normalization of Diffusion Tensor Images Improves the Detection of White Matter Differences: An Example Study Using Amyotrophic Lateral Sclerosis

Hui Zhang; Brian B. Avants; Paul A. Yushkevich; John H. Woo; Sumei Wang; Leo McCluskey; Lauren Elman; Elias R. Melhem; James C. Gee

Spatial normalization of diffusion tensor images plays a key role in voxel-based analysis of white matter (WM) group differences. Currently, it has been achieved using low-dimensional registration methods in the large majority of clinical studies. This paper aims to motivate the use of high-dimensional normalization approaches by generating evidence of their impact on the findings of such studies. Using an ongoing amyotrophic lateral sclerosis (ALS) study, we evaluated three normalization methods representing the current range of available approaches: low-dimensional normalization using the fractional anisotropy (FA), high-dimensional normalization using the FA, and high-dimensional normalization using full tensor information. Each method was assessed in terms of its ability to detect significant differences between ALS patients and controls. Our findings suggest that inadequate normalization with low-dimensional approaches can result in insufficient removal of shape differences which in turn can confound FA differences in a complex manner, and that utilizing high-dimensional normalization can both significantly minimize the confounding effect of shape differences to FA differences and provide a more complete description of WM differences in terms of both size and tissue architecture differences. We also found that high-dimensional approaches, by leveraging full tensor features instead of tensor-derived indices, can further improve the alignment of WM tracts.


NeuroImage | 2010

Evaluation of volume-based and surface-based brain image registration methods

Arno Klein; Satrajit S. Ghosh; Brian B. Avants; Boon Thye Thomas Yeo; Bruce Fischl; Babak A. Ardekani; James C. Gee; J.J. Mann; Ramin V. Parsey

Establishing correspondences across brains for the purposes of comparison and group analysis is almost universally done by registering images to one another either directly or via a template. However, there are many registration algorithms to choose from. A recent evaluation of fully automated nonlinear deformation methods applied to brain image registration was restricted to volume-based methods. The present study is the first that directly compares some of the most accurate of these volume registration methods with surface registration methods, as well as the first study to compare registrations of whole-head and brain-only (de-skulled) images. We used permutation tests to compare the overlap or Hausdorff distance performance for more than 16,000 registrations between 80 manually labeled brain images. We compared every combination of volume-based and surface-based labels, registration, and evaluation. Our primary findings are the following: 1. de-skulling aids volume registration methods; 2. custom-made optimal average templates improve registration over direct pairwise registration; and 3. resampling volume labels on surfaces or converting surface labels to volumes introduces distortions that preclude a fair comparison between the highest ranking volume and surface registration methods using present resampling methods. From the results of this study, we recommend constructing a custom template from a limited sample drawn from the same or a similar representative population, using the same algorithm used for registering brains to the template.

Collaboration


Dive into the Brian B. Avants's collaboration.

Top Co-Authors

Avatar

James C. Gee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Murray Grossman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Pluta

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John A. Detre

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Sandhitsu R. Das

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Philip A. Cook

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jeffrey T. Duda

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Corey T. McMillan

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge