Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian B. Looney is active.

Publication


Featured researches published by Brian B. Looney.


Ground Water | 2011

Contaminant Plume Classification System Based on Mass Discharge

Charles J. Newell; Shahla K. Farhat; David T. Adamson; Brian B. Looney

Estimation of mass discharge has become an increasingly valuable analysis technique at sites with contaminated groundwater plumes. We propose a simple plume magnitude classification system based on mass discharge comprised of 10 separate magnitude categories, such as a Mag 7 plume. This system can be a useful tool for scientists, engineers, regulators, and stakeholders to better communicate site conceptual models, prioritize sites, evaluate plumes both spatially and temporally, and determine potential impacts.


Archive | 2006

MASS BALANCE: A KEY TO ADVANCING MONITORED AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

Brian B. Looney; K Karen Vangelas; K Karen-M Adams; Francis H. Chappelle; Tom O. Early; Claire H. Sink

Monitored natural attenuation (MNA) and enhanced attenuation (EA) are two environmental management strategies that rely on a variety of attenuation processes to degrade or immobilize contaminants and are implemented at appropriate sites by demonstrating that contaminant plumes have low risk and are stable or shrinking. The concept of a mass balance between the loading and attenuation of contaminants in a groundwater system is a powerful framework for conceptualizing and documenting the relative stability of a contaminant plume. As a result, this concept has significant potential to support appropriate implementation of monitored natural attenuation (MNA) and enhanced attenuation (EA). For mass balance to be useful in engineering practice, however, it is necessary to quantify it in practical ways that facilitate overall site remediation and which are consistent with existing regulatory guidance. Two divergent philosophies exist for quantifying plume stability--empirical and deterministic. The first relies on historical contaminant concentration data and bulk geochemical information from a monitoring well network and documents plume stability using trend analysis and statistical tools. This empirical approach, when feasible, provides powerful and compelling documentation of plume behavior and mass balance. It provides an interpretation on a relevant scale under field conditions. It integrates the operative attenuation processesmorexa0» measured by observing their actual impact on the plume. The power of the empirical approach was recognized early in the development of MNA guidance and protocols and it is currently the basis of the three lines of evidence used in MNA studies. The empirical approach has some weaknesses, however. It requires a relatively long period of undisturbed historical data. Thus it cannot be effectively applied to sites where active remediation was initiated quickly and is currently operating. It cannot be used as a tool to determine how much source removal is needed or when to turn off active remediation and transition to MNA. It cannot be used to evaluate potential enhancement options (unless a long period of post enhancement monitoring is planned). It provides only indirect information about process and treats the plume as a black box. The empirical approach has the advantage that, when sufficient monitoring data are available, the attenuation capacity can be defined inexpensively and with a high degree of certainty. Alternatively, a deterministic approach can be used to assess mass balance and plume stability. In this approach, the physical, chemical, and biological attenuation processes are used to assess contaminant loading and attenuation. The deterministic approach has the advantage that, when sufficient hydrologic, geochemical, and microbiological data are available, it is possible to project how a system will respond to contaminant removal actions or enhancements of natural attenuation processes. The black box of the plume is taken apart, quantified, and put back together again. The disadvantage of the deterministic approach is that it is difficult to measure all or most of the relevant hydrologic, geochemical, and biological parameters with any certainty. Case studies over the past decade demonstrate that empirical and deterministic approaches to MNA/EA are not mutually exclusive. These studies document that improved decision support and efficiency result by combining these methods based on the individual challenges presented by a given site. Whenever possible, the empirical approach is used to quantify mass loading and attenuation capacity (mass of contaminant/unit time) at particular sites. This is the most effective way to demonstrate the efficiency of ongoing natural attenuation processes in accordance with current regulatory guidance. But in addition, the monitoring well networks needed to apply the empirical approach can also yield estimates of the hydrologic, geochemical, and biological parameters needed to apply deterministic models. These models can then be used to estimate how contaminant behavior will change over time, as contaminant mass is removed, or if attenuation mechanisms are enhanced by engineering methods. The dual use of these empirical and deterministic approaches can help integrate the use of MNA and EA for overall site remediation.«xa0less


Archive | 2006

ADVANCING THE SCIENCE OF NATURAL AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

Brian B. Looney; Tom Early; T Tyler Gilmore; F Francis H. Chapelle; Norman H. Cutshall; J Jeff Ross; M Mark Ankeny; M Michael Heitkamp; D David Major; Charles J. Newell; W. Jody Waugh; G Gary Wein; K Vangelas; K Karen-M Adams; Claire H. Sink

This report summarizes the results of a three-year program that addressed key scientific and technical aspects related to natural and enhanced attenuation of chlorinated organics. The results from this coordinated three-year program support a variety of technical and regulatory advancements. Scientists, regulators, engineers, end-users and stakeholders participated in the program, which was supported by the U.S. Department of Energy (DOE) and the Interstate Technology and Regulatory Council (ITRC). The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). A key result of the recent effort was the general affirmation of the approaches and guidance in the original U.S. Environmental Protection Agency (EPA) chlorinated solvent MNA protocols and directives from 1998 and 1999, respectively. The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of combined remedies for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well as in the technical and regulatory documents being developed within the ITRC. Natural attenuation processes occur in all soil and groundwater systems and act, to varying degrees, on all contaminants. Thus, a decision to rely on natural attenuation processes as part of a site-remediation strategy does not depend on the occurrence of natural attenuation, but on its effectiveness in meeting site-specific remediation goals. Meeting these goals typically requires low risk, plume stability, and documentation of accepted and sustainable attenuation processes. Plume stability and sustainability depend on the balance between contaminant loading into the plume and contaminant attenuation within the plume. This mass balance is a simple and powerful idea that developed into the central framework for all aspects of the DOE MNA/EA program. The centrality of mass balance has been advocated by Chapelle and others (e.g., 1995) for several years, and the concepts proved to be critical to conceptualizing natural attenuation remedies, designing enhancements, developing characterization and monitoring strategies, and developing regulatory decision frameworks that encourage broader use of MNA/EA with clarified technical responsibility.


Chemosphere | 2015

The effects of a stannous chloride-based water treatment system in a mercury contaminated stream

Teresa J. Mathews; Brian B. Looney; A. Lawrence Bryan; John G. Smith; Carrie L. Miller; George R. Southworth; Mark J. Peterson

We assessed the impacts of an innovative Hg water treatment system on a small, industrially-contaminated stream in the southeastern United States. The treatment system, installed in 2007, removes Hg from wastewater using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations in the receiving stream, Tims Branch, decreased from >100 to ∼10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel (Esox americanus) decreased by 70% at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to methylmercury (MeHg) production or bioaccumulation in this system. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream, but future studies are needed to assess longer term impacts of Sn on the environment.


Archive | 2012

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE

Brian B. Looney; L. Bryan; Teresa J. Mathews

Mercury (Hg) has been identified as a persistent, bioaccumulative and toxic pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish aremorexa0» more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energys (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concentration in fish is a primary regulatory driver for controlling mercury in streams; and (2) the potential for negative impacts associated with inorganic tin, including, biological transformation and uptake, and/or undesirable accumulation/focusing of tin to in key ecosystem compartments.«xa0less


Archive | 2006

Enhanced Attenuation: A Reference Guide On Approaches To Increase The Natural Treatment Capacity Of A System

Brian B. Looney; M Michael Heitkamp; G Gary Wein; K Vangelas; K Karen-M Adams; Tom Early; Bob Borden; David W. Major; W. Jody Waugh; Todd Wiedemeier; Claire H. Sink

The objective of this document is to explore the realm of enhancements to natural attenuation processes for cVOCs and review examples that have been proposed, modeled, and implemented. We will identify lessons learned from these case studies to confirm that enhancements are technically feasible and have the potential to achieve a favorable, cost-effective contaminant mass balance. Furthermore, we hope to determine if opportunities for further improvement of the enhancements exist and suggest areas where new and innovative types of enhancements might be possible.


Archive | 2009

CHRONIC ZINC SCREENING WATER EFFECT RATIO FOR THE H-12 OUTFALL, SAVANNAH RIVER SITE

D Coughlin; Brian B. Looney; M Margaret Millings

In response to proposed Zn limits for the NPDES outfall H-12, a Zn screening Water Effects Ratio (WER) study was conducted to determine if a full site-specific WER is warranted. Using standard assumptions for relating the lab results to the stream, the screening WER data were consistent with the proposed Zn limit and suggest that a full WER would result in a similar limit. Addition of a humate amendment to the outfall water reduced Zn toxicity, but the toxicity reduction was relatively small and unlikely to impact proposed Zn limits. The screening WER data indicated that the time and expense required to perform a full WER for Zn is not warranted.


Archive | 2007

DETECTING AND QUANTIFYING REDUCTIVE DECHLORINATION DURING MONITORED NATURAL ATTENUATION AT THE SAVANNAH RIVER CBRP SITE

K Vangelas; Jack Istok; Jennifer A. Field; E Eric Raes; M Margaret Millings; Aaron D. Peacock; Brian B. Looney

Various attenuation mechanisms control the destruction, stabilization, and/or removal of contaminants from contaminated subsurface systems. Measuring the rates of the controlling attenuation mechanisms is a key to employing mass balance as a means to evaluate and monitor the expansion, stability and subsequent shrinkage of a contaminant plume. A team of researchers investigated the use of push-pull tests for measuring reductive dechlorination rates in situ at sites with low chlorinated solvent concentrations (<1 ppm). The field research also examined the synergistic use of a suite of geochemical and microbial assays. Previous push-pull tests applied to environmental remediation objectives focused on general hydrological characterization or on designing bioremediation systems by examining the response of the subsurface to stimulation. In this research, the push-pull technique was tested to determine its low-range sensitivity and uncertainty. Can these tests quantify relatively low attenuation rates representative of natural attenuation? The results of this research indicate that push-pull testing will be useful for measurement of in situ reductive dechlorination rates for chlorinated solvents at Monitored Natural Attenuation (MNA) sites. Further, using principal component analysis and other techniques, the research confirmed the usefulness of multiple lines of evidence in site characterization and in upscaling measurements made in individualmorexa0» wells--especially for sites where there is a geochemical gradient or varying geochemical regimes within the contaminant plume.«xa0less


Remediation Journal | 2004

Historical analysis of monitored natural attenuation: A survey of 191 chlorinated solvent sites and 45 solvent plumes

Travis M. McGuire; Charles J. Newell; Brian B. Looney; Karen M. Vangelas; Claire H. Sink


Environmental Geosciences | 2004

Geology and environmental remediation: Savannah River Site, South Carolina

Mary K. Harris; Brian B. Looney; Dennis G. Jackson

Collaboration


Dive into the Brian B. Looney's collaboration.

Top Co-Authors

Avatar

Claire H. Sink

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Karen M. Vangelas

Savannah River National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian D. Johnson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George R. Southworth

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen M. Adams

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Mark J. Peterson

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge